Voir la notice de l'article provenant de la source International Scientific Research Publications
Alqahtani, Rubayyi T. 1
@article{JNSA_2016_9_5_a4, author = {Alqahtani, Rubayyi T.}, title = {Fixed-point theorem for {Caputo--Fabrizio} fractional {Nagumo} equation with nonlinear diffusion and convection}, journal = {Journal of nonlinear sciences and its applications}, pages = {1991-1999}, publisher = {mathdoc}, volume = {9}, number = {5}, year = {2016}, doi = {10.22436/jnsa.009.05.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.05/} }
TY - JOUR AU - Alqahtani, Rubayyi T. TI - Fixed-point theorem for Caputo--Fabrizio fractional Nagumo equation with nonlinear diffusion and convection JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 1991 EP - 1999 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.05/ DO - 10.22436/jnsa.009.05.05 LA - en ID - JNSA_2016_9_5_a4 ER -
%0 Journal Article %A Alqahtani, Rubayyi T. %T Fixed-point theorem for Caputo--Fabrizio fractional Nagumo equation with nonlinear diffusion and convection %J Journal of nonlinear sciences and its applications %D 2016 %P 1991-1999 %V 9 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.05/ %R 10.22436/jnsa.009.05.05 %G en %F JNSA_2016_9_5_a4
Alqahtani, Rubayyi T. Fixed-point theorem for Caputo--Fabrizio fractional Nagumo equation with nonlinear diffusion and convection. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 1991-1999. doi : 10.22436/jnsa.009.05.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.05/
[1] The role of the diffusion in mathematical population biology: skellam revisited, Lecture Notes in Biomath, Springer, Berlin, 1985
[2] On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation, Appl. Math. Comput., Volume 273 (2016), pp. 948-956
[3] Analysis of the Keller-Segel model with a fractional derivative without singular kernel , Entropy, Volume 17 (2015), pp. 4439-4453
[4] Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel , Adv. Mech. Eng., Volume 7 (2015), pp. 1-6
[5] On the fractional Nagumo equation with nonlinear diffusion and convection, Abstr Appl. Anal., Volume 2014 (2014), pp. 1-7
[6] A new definition of fractional derivative without singular kernel , Progr. Fract. Differ. Appl., Volume 1 (2015), pp. 73-85
[7] Analytic solutions of the Nagumo equation, IMA J. Appl. Math., Volume 48 (1992), pp. 107-115
[8] Mathematical models of threshold phenomena in the nerve membrane, Bull. Math. Biophys., Volume 17 (1955), pp. 257-278
[9] Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., Volume 1 (1961), pp. 445-466
[10] Mathematical models of excitation and propagation in nerve, McGraw-Hill, New York, 1969
[11] Weak travelling fronts for population models with density dependent dispersion, Math. Methods Appl. Sci., Volume 9 (1987), pp. 576-586
[12] The existence of periodic solutions to Nagumo's equation, Quart. J. Math., Volume 25 (1974), pp. 369-378
[13] New exact solutions to the FitzHugh-Nagumo equation, Appl. Math. Comput., Volume 180 (2006), pp. 524-528
[14] Properties of a new fractional derivative without singular kernel , Progr. Fract. Differ. Appl., Volume 1 (2015), pp. 87-92
[15] On the sharp front-type solution of the Nagumo equation with nonlinear diffusion and convection, Pramana, Volume 80 (2013), pp. 533-538
[16] An active pulse transmission line simulating nerve axon, Proc. IRE, Volume 50 (1962), pp. 2061-2070
[17] The non-classical method is more general than the direct method for symmetry reductions: an example of the Fitzhugh-Nagumo equation, Phys. Lett. A, Volume 164 (1992), pp. 49-56
[18] Exact solutions of the time-fractional Fitzhugh-Nagumo equation, 11th internattional conference of numerical analysis and applied mathematics, Volume 1558 (2013), pp. 1919-1922
[19] Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations, J. Math. Biol., Volume 35 (1997), pp. 713-728
Cité par Sources :