Voir la notice de l'article provenant de la source International Scientific Research Publications
Farajzadeh, Ali 1 ; Chuadchawna, Preeyaluk 2 ; Kaewcharoen, Anchalee 2
@article{JNSA_2016_9_5_a3, author = {Farajzadeh, Ali and Chuadchawna, Preeyaluk and Kaewcharoen, Anchalee}, title = {Fixed point theorems for (\(\alpha,\eta,\psi,\xi\))-contractive multi-valued mappings on \(\alpha-\eta\)-complete partial metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {1977-1990}, publisher = {mathdoc}, volume = {9}, number = {5}, year = {2016}, doi = {10.22436/jnsa.009.05.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.04/} }
TY - JOUR AU - Farajzadeh, Ali AU - Chuadchawna, Preeyaluk AU - Kaewcharoen, Anchalee TI - Fixed point theorems for (\(\alpha,\eta,\psi,\xi\))-contractive multi-valued mappings on \(\alpha-\eta\)-complete partial metric spaces JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 1977 EP - 1990 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.04/ DO - 10.22436/jnsa.009.05.04 LA - en ID - JNSA_2016_9_5_a3 ER -
%0 Journal Article %A Farajzadeh, Ali %A Chuadchawna, Preeyaluk %A Kaewcharoen, Anchalee %T Fixed point theorems for (\(\alpha,\eta,\psi,\xi\))-contractive multi-valued mappings on \(\alpha-\eta\)-complete partial metric spaces %J Journal of nonlinear sciences and its applications %D 2016 %P 1977-1990 %V 9 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.04/ %R 10.22436/jnsa.009.05.04 %G en %F JNSA_2016_9_5_a3
Farajzadeh, Ali; Chuadchawna, Preeyaluk; Kaewcharoen, Anchalee. Fixed point theorems for (\(\alpha,\eta,\psi,\xi\))-contractive multi-valued mappings on \(\alpha-\eta\)-complete partial metric spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 1977-1990. doi : 10.22436/jnsa.009.05.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.04/
[1] Common fixed point results for noncommuting mappings without continuity in cone metric space, J. Math. Anal. Appl., Volume 341 (2008), pp. 416-420
[2] (\(\alpha,\psi,\xi\))-Contractive multi-valued mappings, Fixed point theory Appl., Volume 2014 (2014), pp. 1-8
[3] Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud., Volume 1 (2008), pp. 1-8
[4] Generalized contraction on partial metric spaces, Topology Appl., Volume 157 (2010), pp. 2778-2785
[5] Fixed points of generalized \(\alpha-\psi\)-contractions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math., Volume 108 (2014), pp. 519-526
[6] Some fixed point results in ordered partial metric spaces, J. Nonlinear Sci. Appl., Volume 4 (2011), pp. 210-217
[7] Common fixed point for four maps in ordered partial metric spaces, Fasc. Math., Volume 49 (2012), pp. 15-31
[8] Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces , Topology Appl., Volume 159 (2012), pp. 3234-3242
[9] Transformazioni tipo contravtivo generalizzato in uno spazio metrico, Atti Accad. Naz. Lincei, Rend. Ci. Sci. Fis. Mat. Nat., Volume 45 (1968), pp. 212-216
[10] Fixed point theory in \(\alpha\)-complete metric spaces with applications, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-11
[11] On new fixed pont results for (\(\alpha,\psi,\xi\))-contractive multi-valued mappings on \(\alpha\)- complete metric spaces and their consequences, Fixed point theory Appl., Volume 2015 (2015), pp. 1-15
[12] Partial metric topology, Papers on general topology and applications, Ann. New York Acad. Sci. (1994), pp. 183-197
[13] Some results on fixed points of \(\alpha-\psi\)-Ciric generalized multifunction, Fixed point theory Appl., Volume 2013 (2013), pp. 1-10
[14] Multi-valued contraction mappings , Pacific J. Math., Volume 30 (1969), pp. 475-488
[15] A generalization of the Banach contraction principle with high order of convergence of successive approximations, Nonlinear Anal., Volume 67 (2007), pp. 2361-2369
[16] Fixed-point theorems for \(\alpha-\psi\)-contractive type mappings, Nonlinear Anal., Volume 75 (2012), pp. 2154-2165
[17] Weak condition for generalized multi-valued \((f, alpha,\beta)\)-weak contraction mappings, Appl. Math. Lett., Volume 24 (2011), pp. 460-465
Cité par Sources :