Fixed point theorems for ($\alpha,\eta,\psi,\xi$)-contractive multi-valued mappings on $\alpha-\eta$-complete partial metric spaces
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 1977-1990.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, the notion of strictly ($\alpha,\eta,\psi,\xi$)-contractive multi-valued mappings is introduced where the continuity of $\xi$ is relaxed. The existence of fixed point theorems for such mappings in the setting of $\alpha,\eta$-complete partial metric spaces are provided. The results of the paper can be viewed as the extension of the recent results obtained in the literature. Furthermore, we assure the fixed point theorems in partial complete metric spaces endowed with an arbitrary binary relation and with a graph using our obtained results.
DOI : 10.22436/jnsa.009.05.04
Classification : 47H10, 54H25
Keywords: \(\alpha،\eta\)-complete partial metric spaces, \(\alpha،\eta\)-continuity, (\(\alpha،\eta،\psi،\xi\))-contractive multi-valued mappings, \(\alpha\)-admissible multi-valued mappings with respect to \(\eta\).

Farajzadeh, Ali 1 ; Chuadchawna, Preeyaluk 2 ; Kaewcharoen, Anchalee 2

1 Department of Mathematics, Faculty of Science, Razi University, Kermanshah, 67149, Iran
2 Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
@article{JNSA_2016_9_5_a3,
     author = {Farajzadeh, Ali and Chuadchawna, Preeyaluk and Kaewcharoen, Anchalee},
     title = {Fixed point  theorems for (\(\alpha,\eta,\psi,\xi\))-contractive multi-valued mappings on \(\alpha-\eta\)-complete partial metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1977-1990},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2016},
     doi = {10.22436/jnsa.009.05.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.04/}
}
TY  - JOUR
AU  - Farajzadeh, Ali
AU  - Chuadchawna, Preeyaluk
AU  - Kaewcharoen, Anchalee
TI  - Fixed point  theorems for (\(\alpha,\eta,\psi,\xi\))-contractive multi-valued mappings on \(\alpha-\eta\)-complete partial metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 1977
EP  - 1990
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.04/
DO  - 10.22436/jnsa.009.05.04
LA  - en
ID  - JNSA_2016_9_5_a3
ER  - 
%0 Journal Article
%A Farajzadeh, Ali
%A Chuadchawna, Preeyaluk
%A Kaewcharoen, Anchalee
%T Fixed point  theorems for (\(\alpha,\eta,\psi,\xi\))-contractive multi-valued mappings on \(\alpha-\eta\)-complete partial metric spaces
%J Journal of nonlinear sciences and its applications
%D 2016
%P 1977-1990
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.04/
%R 10.22436/jnsa.009.05.04
%G en
%F JNSA_2016_9_5_a3
Farajzadeh, Ali; Chuadchawna, Preeyaluk; Kaewcharoen, Anchalee. Fixed point  theorems for (\(\alpha,\eta,\psi,\xi\))-contractive multi-valued mappings on \(\alpha-\eta\)-complete partial metric spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 1977-1990. doi : 10.22436/jnsa.009.05.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.04/

[1] Abbas, M.; Jungck, G. Common fixed point results for noncommuting mappings without continuity in cone metric space, J. Math. Anal. Appl., Volume 341 (2008), pp. 416-420

[2] Ali, M. U.; Kamran, T.; E. Karapinar (\(\alpha,\psi,\xi\))-Contractive multi-valued mappings, Fixed point theory Appl., Volume 2014 (2014), pp. 1-8

[3] Altun, I.; Simsek, H. Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud., Volume 1 (2008), pp. 1-8

[4] Altun, I.; Sola, F.; Simsek, H. Generalized contraction on partial metric spaces, Topology Appl., Volume 157 (2010), pp. 2778-2785

[5] Amiri, P.; Rezapour, S.; Shahzad, N. Fixed points of generalized \(\alpha-\psi\)-contractions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math., Volume 108 (2014), pp. 519-526

[6] H. Aydi Some fixed point results in ordered partial metric spaces, J. Nonlinear Sci. Appl., Volume 4 (2011), pp. 210-217

[7] Aydi, H. Common fixed point for four maps in ordered partial metric spaces, Fasc. Math., Volume 49 (2012), pp. 15-31

[8] Aydi, H.; Abbas, M.; C. Vetro Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces , Topology Appl., Volume 159 (2012), pp. 3234-3242

[9] Bianchini, R. M.; M. Grandolfi Transformazioni tipo contravtivo generalizzato in uno spazio metrico, Atti Accad. Naz. Lincei, Rend. Ci. Sci. Fis. Mat. Nat., Volume 45 (1968), pp. 212-216

[10] Hussain, N.; Kutbi, M. A.; P. Salimi Fixed point theory in \(\alpha\)-complete metric spaces with applications, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-11

[11] Kutbi, M. A.; Sintunavrat, W. On new fixed pont results for (\(\alpha,\psi,\xi\))-contractive multi-valued mappings on \(\alpha\)- complete metric spaces and their consequences, Fixed point theory Appl., Volume 2015 (2015), pp. 1-15

[12] Matthews, S. G. Partial metric topology, Papers on general topology and applications, Ann. New York Acad. Sci. (1994), pp. 183-197

[13] Mohammadi, B.; Rezapour, S.; S. Naseer Some results on fixed points of \(\alpha-\psi\)-Ciric generalized multifunction, Fixed point theory Appl., Volume 2013 (2013), pp. 1-10

[14] S. B. J. Nadler Multi-valued contraction mappings , Pacific J. Math., Volume 30 (1969), pp. 475-488

[15] Proinov, P. D. A generalization of the Banach contraction principle with high order of convergence of successive approximations, Nonlinear Anal., Volume 67 (2007), pp. 2361-2369

[16] Samet, B.; Vetro, C.; Vetro, P. Fixed-point theorems for \(\alpha-\psi\)-contractive type mappings, Nonlinear Anal., Volume 75 (2012), pp. 2154-2165

[17] Sintunavarat, W.; P. Kumam Weak condition for generalized multi-valued \((f, alpha,\beta)\)-weak contraction mappings, Appl. Math. Lett., Volume 24 (2011), pp. 460-465

Cité par Sources :