A Lyapunov-type inequality for a fractional q-difference boundary value problem
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 1965-1976.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we establish a Lyapunov-type inequality for a fractional q-difference equation subject to Dirichlet-type boundary conditions. The obtained inequality generalizes several existing results from the literature including the standard Lyapunov inequality. We use that result to provide an interval, where a certain Mittag-Leffler function has no real zeros. We present also another application of the obtained inequality, where we prove that existence implies uniqueness for a certain class of fractional q-difference boundary value problems.
DOI : 10.22436/jnsa.009.05.03
Classification : 26D10, 39A13, 26A33, 33E12
Keywords: Lyapunov's inequality, q-fractional derivative, Green's function, Mittag-Leffler function.

Jleli, Mohamed 1 ; Samet, Bessem 1

1 Department of Mathematics, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
@article{JNSA_2016_9_5_a2,
     author = {Jleli, Mohamed and Samet, Bessem},
     title = {A {Lyapunov-type} inequality for  a fractional q-difference boundary value problem},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1965-1976},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2016},
     doi = {10.22436/jnsa.009.05.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.03/}
}
TY  - JOUR
AU  - Jleli, Mohamed
AU  - Samet, Bessem
TI  - A Lyapunov-type inequality for  a fractional q-difference boundary value problem
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 1965
EP  - 1976
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.03/
DO  - 10.22436/jnsa.009.05.03
LA  - en
ID  - JNSA_2016_9_5_a2
ER  - 
%0 Journal Article
%A Jleli, Mohamed
%A Samet, Bessem
%T A Lyapunov-type inequality for  a fractional q-difference boundary value problem
%J Journal of nonlinear sciences and its applications
%D 2016
%P 1965-1976
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.03/
%R 10.22436/jnsa.009.05.03
%G en
%F JNSA_2016_9_5_a2
Jleli, Mohamed; Samet, Bessem. A Lyapunov-type inequality for  a fractional q-difference boundary value problem. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 1965-1976. doi : 10.22436/jnsa.009.05.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.03/

[1] Agarwal, R. P. Certain fractional q-integrals and q-derivatives, Proc. Cambridge Philos. Soc., Volume 66 (1969), pp. 365-370

[2] Aktas, M. F. Lyapunov-type inequalities for a certain class of n-dimensional quasilinear systems, Electron. J. Differ. Equat., Volume 67 (2013), pp. 1-8

[3] Al-Salam, W. A. Some fractional q-integrals and q-derivatives, Proc. Edinb. Math. Soc., Volume 15 (1966/1967), pp. 135-140

[4] Atici, F. M.; Eloe, P. W. Fractional q-calculus on a time scale, J. Nonlinear Math. Phys., Volume 14 (2007), pp. 333-344

[5] Çakmak, D. Lyapunov-type integral inequalities for certain higher order differential equations, Appl. Math. Comput., Volume 216 (2010), pp. 368-373

[6] akmak, D. Ç On Lyapunov-type inequality for a class of nonlinear systems, Math. Inequal. Appl., Volume 16 (2013), pp. 101-108

[7] Cheng, S. S. A discrete analogue of the inequality of Lyapunov, Hokkaido Math. J., Volume 12 (1983), pp. 105-112

[8] Eliason, S. B. A Lyapunov inequality for a certain nonlinear differential equation, J. London Math. Soc., Volume 2 (1970), pp. 461-466

[9] El-Shahed, M.; Hassan, H. A. Positive solutions of q-difference equation, Proc. Amer. Math. Soc., Volume 138 (2010), pp. 1733-1738

[10] T. Ernst The History of q-Calculus and a New Method, Department of Mathematics, Uppsala University, 2000

[11] Ferreira, R. A. C. Nontrivial solutions for fractional q-difference boundary value problems, Electron. J. Qual. Theory Differ. Equ., Volume 70 (2010), pp. 1-10

[12] Ferreira, R. A. C. Positive solutions for a class of boundary value problems with fractional q-differences , Comput. Math. Appl., Volume 61 (2011), pp. 367-373

[13] Ferreira, R. A. C. A Lyapunov-type inequality for a fractional boundary value problem, Fract. Calc. Appl. Anal., Volume 16 (2013), pp. 978-984

[14] Hartman, P.; Wintner, A. On an oscillation criterion of Liapounoff, Amer. J. Math., Volume 73 (1951), pp. 885-890

[15] He, X.; Tang, X. H. Lyapunov-type inequalities for even order differential equations, Commun. Pure Appl. Anal., Volume 11 (2012), pp. 465-473

[16] Jackson, F. H. On q-functions and a certain difference operator, Trans. Roy Soc. Edin., Volume 46 (1909), pp. 253-281

[17] Jackson, F. H. On q-definite integrals, Quart. J. Pure and Appl. Math., Volume 41 (1910), pp. 193-203

[18] Kac, V.; Cheung, P. Quantum Calculus, Springer, New York, 2002

[19] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier, Amsterdam, 2006

[20] Kwong, M. K. On Lyapunov's inequality for disfocality, J. Math. Anal. Appl., Volume 83 (1981), pp. 486-494

[21] Liang, S.; J. Zhang Existence and uniqueness of positive solutions for three-point boundary value problem with fractional q-differences, J. Appl. Math. Comput., Volume 40 (2012), pp. 277-288

[22] Lyapunov, A. M. Problème général de la stabilité du mouvement, Ann. Math. Stud. vol. 17, Princeton Univ. Ptess, Princeton, 1949

[23] Ma, J.; Yang, J. Existence of solutions for multi-point boundary value problem of fractional q-difference equation, Electron. J. Qual. Theory Differ. Equ., Volume 2011 (2011), pp. 1-10

[24] Pachpatte, B. G. On Lyapunov-type inequalities for certain higher order differential equations, J. Math. Anal. Appl., Volume 195 (1995), pp. 527-536

[25] Pachpatte, B. G. Lyapunov type integral inequalities for certain differential equations, Georgian Math. J., Volume 4 (1997), pp. 139-148

[26] Parhi, N.; S. Panigrahi On Liapunov-type inequality for third-order differential equations , J. Math. Anal. Appl., Volume 233 (1999), pp. 445-460

[27] Rajković, P. M.; Marinković, S. D.; M. S. Stanković On q-analogues of caputo derivative and Mittag-Leffler function, Fract. Calc. Appl. Anal., Volume 10 (2007), pp. 359-373

[28] Tariboon, J.; Ntouyas, S. K. Quantum integral inequalities on finite intervals, J. Inequal. Appl., Volume 2014 (2014), pp. 1-13

[29] Tariboon, J.; Ntouyas, S. K.; Agarwal, P. New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations, Adv. Difference Equ., Volume 2015 (2015), pp. 1-19

[30] Yang, X. On Liapunov-type inequality for certain higher-order differential equations, Appl. Math. Comput., Volume 134 (2003), pp. 307-317

Cité par Sources :