Voir la notice de l'article provenant de la source International Scientific Research Publications
Wang, Hongjun 1 ; Zheng, Yuchun 1
@article{JNSA_2016_9_5_a1, author = {Wang, Hongjun and Zheng, Yuchun}, title = {Fixed point theorem and nonlinear complementarity problem in {Hilbert} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {1957-1964}, publisher = {mathdoc}, volume = {9}, number = {5}, year = {2016}, doi = {10.22436/jnsa.009.05.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.02/} }
TY - JOUR AU - Wang, Hongjun AU - Zheng, Yuchun TI - Fixed point theorem and nonlinear complementarity problem in Hilbert spaces JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 1957 EP - 1964 VL - 9 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.02/ DO - 10.22436/jnsa.009.05.02 LA - en ID - JNSA_2016_9_5_a1 ER -
%0 Journal Article %A Wang, Hongjun %A Zheng, Yuchun %T Fixed point theorem and nonlinear complementarity problem in Hilbert spaces %J Journal of nonlinear sciences and its applications %D 2016 %P 1957-1964 %V 9 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.02/ %R 10.22436/jnsa.009.05.02 %G en %F JNSA_2016_9_5_a1
Wang, Hongjun; Zheng, Yuchun. Fixed point theorem and nonlinear complementarity problem in Hilbert spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 1957-1964. doi : 10.22436/jnsa.009.05.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.02/
[1] Nonexpansive projections on subsets of Banach spaces, Pacific J. Math., Volume 47 (1973), pp. 341-355
[2] On fixed and periodic points under contractive mappings, J. London Math. Soc., Volume 37 (1962), pp. 74-79
[3] Engineering and Economic Applications of Complementarity Problems, SIAM Rev., Volume 39 (1997), pp. 669-713
[4] Topics in metric fixed point theory, Cambridge University Press, Cambridge, 1990
[5] Classical theory of nonexpansive mappings, Kluwer Acad. Publ., Dordrecht, 2001
[6] Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 957-961
[7] Finite-dimensional variational inequality and nonlinear complementarity problem: A survey of theory, algorithms and applications, Math. Programming, Volume 48 (1990), pp. 161-220
[8] Fixed points by a new iteration method, Proc. Amer. Math. Soc., Volume 44 (1974), pp. 147-150
[9] Fixed points and iteration of a nonexpansive mappings in Banach space , Proc. Amer. Math. Soc., Volume 59 (1976), pp. 361-365
[10] Two observations about the method of successive approximations, Uspehi Math. Nauk, Volume 10 (1955), pp. 123-127
[11] Mean value methods in iteration, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 65-71
[12] A nonlinear complementarity problem in mathematical programming in Hilbert space, Bull. Austral. Math. Soc., Volume 20 (1979), pp. 233-236
[13] Equivalence of nonlinear complementarity problems and least-element problems in Banach lattices, Math. Oper. Res., Volume 6 (1981), pp. 462-474
[14] On the equivalence of nonlinear complementarity problems and least-element problems, Math. Programming, Volume 70 (1995), pp. 191-200
[15] Halpern iteration for firmly type nonexpansive mappings, Nonlinear Anal., Volume 71 (2009), pp. 4500-4506
[16] Fixed point property and approximation of a class of nonexpansive mappings, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-11
[17] Successive approximations for quasi-firmly type nonexpansive mappings, Math. Commun., Volume 16 (2011), pp. 251-264
[18] The F-complementarity problem and its equivalence with the least element problem, Acta Math. Sinica (Chin. Ser.), Volume 44 (2001), pp. 679-686
[19] Equivalence of generalized mixed complementarity and generalized mixed least element problems in ordered spaces, Optimization, Volume 58 (2009), pp. 63-76
[20] A class of variational-like inequality problems and its equivalence with the least element problems, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 259-270
Cité par Sources :