Fixed point theorem and nonlinear complementarity problem in Hilbert spaces
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 1957-1964.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, the concept of the strongly monotone type mapping is introduced, which contains the strongly monotone mapping and firmly type nonexpansive mapping as special cases. We show the equivalence between the fixed point problem and the complementarity problem of strongly monotone type mapping. Furthermore, it is obtained that an iteration sequence strongly converges to a unique solution of such a nonlinear complementarity problem on the proper conditions. The error estimation of such an iteration is discussed.
DOI : 10.22436/jnsa.009.05.02
Classification : 47H10, 54H25, 49J40, 47H05, 47H04, 65J15
Keywords: Fixed point, strongly monotone type, complementarity problem, iteration.

Wang, Hongjun 1 ; Zheng, Yuchun 1

1 School of Mathematics and Information Science and Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, Henan Normal University, XinXiang 453007, P. R. China
@article{JNSA_2016_9_5_a1,
     author = {Wang, Hongjun and Zheng, Yuchun},
     title = {Fixed point theorem and nonlinear complementarity problem in {Hilbert} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1957-1964},
     publisher = {mathdoc},
     volume = {9},
     number = {5},
     year = {2016},
     doi = {10.22436/jnsa.009.05.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.02/}
}
TY  - JOUR
AU  - Wang, Hongjun
AU  - Zheng, Yuchun
TI  - Fixed point theorem and nonlinear complementarity problem in Hilbert spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 1957
EP  - 1964
VL  - 9
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.02/
DO  - 10.22436/jnsa.009.05.02
LA  - en
ID  - JNSA_2016_9_5_a1
ER  - 
%0 Journal Article
%A Wang, Hongjun
%A Zheng, Yuchun
%T Fixed point theorem and nonlinear complementarity problem in Hilbert spaces
%J Journal of nonlinear sciences and its applications
%D 2016
%P 1957-1964
%V 9
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.02/
%R 10.22436/jnsa.009.05.02
%G en
%F JNSA_2016_9_5_a1
Wang, Hongjun; Zheng, Yuchun. Fixed point theorem and nonlinear complementarity problem in Hilbert spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 5, p. 1957-1964. doi : 10.22436/jnsa.009.05.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.05.02/

[1] Bruck, R. E. Nonexpansive projections on subsets of Banach spaces, Pacific J. Math., Volume 47 (1973), pp. 341-355

[2] M. Edelstein On fixed and periodic points under contractive mappings, J. London Math. Soc., Volume 37 (1962), pp. 74-79

[3] Ferris, M. C.; Pang, J. S. Engineering and Economic Applications of Complementarity Problems, SIAM Rev., Volume 39 (1997), pp. 669-713

[4] Goebel, K.; W. A. Kirk Topics in metric fixed point theory, Cambridge University Press, Cambridge, 1990

[5] Goebel, K.; Kirk, W. A. Classical theory of nonexpansive mappings, Kluwer Acad. Publ., Dordrecht, 2001

[6] Halpern, B. Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 957-961

[7] Harker, P. T.; J. S. Pang Finite-dimensional variational inequality and nonlinear complementarity problem: A survey of theory, algorithms and applications, Math. Programming, Volume 48 (1990), pp. 161-220

[8] S. Ishikawa Fixed points by a new iteration method, Proc. Amer. Math. Soc., Volume 44 (1974), pp. 147-150

[9] S. Ishikawa Fixed points and iteration of a nonexpansive mappings in Banach space , Proc. Amer. Math. Soc., Volume 59 (1976), pp. 361-365

[10] M. A. Krasnoselskii Two observations about the method of successive approximations, Uspehi Math. Nauk, Volume 10 (1955), pp. 123-127

[11] W. R. Mann Mean value methods in iteration, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 65-71

[12] Nanda, S. A nonlinear complementarity problem in mathematical programming in Hilbert space, Bull. Austral. Math. Soc., Volume 20 (1979), pp. 233-236

[13] Riddell, R. C. Equivalence of nonlinear complementarity problems and least-element problems in Banach lattices, Math. Oper. Res., Volume 6 (1981), pp. 462-474

[14] Schaible, S.; Yao, J. C. On the equivalence of nonlinear complementarity problems and least-element problems, Math. Programming, Volume 70 (1995), pp. 191-200

[15] Song, Y.; X. Chai Halpern iteration for firmly type nonexpansive mappings, Nonlinear Anal., Volume 71 (2009), pp. 4500-4506

[16] Song, Y.; Huang, Y.; Fixed point property and approximation of a class of nonexpansive mappings, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-11

[17] Song, Y.; Q. Li Successive approximations for quasi-firmly type nonexpansive mappings, Math. Commun., Volume 16 (2011), pp. 251-264

[18] Yin, H. Y.; Xu, C. X.; Zhang, Z. X. The F-complementarity problem and its equivalence with the least element problem, Acta Math. Sinica (Chin. Ser.), Volume 44 (2001), pp. 679-686

[19] Zeng, L. C.; Ansari, Q. H.; Yao, J. C. Equivalence of generalized mixed complementarity and generalized mixed least element problems in ordered spaces, Optimization, Volume 58 (2009), pp. 63-76

[20] Zeng, L. C.; J. C. Yao A class of variational-like inequality problems and its equivalence with the least element problems, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 259-270

Cité par Sources :