Some results on fixed points of nonlinear operators and solutions of equilibrium problems
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1541-1548.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this paper is to investigate fjxed points of an asymptotically quasi-$\phi$-nonexpansive mapping in the intermediate sense and a bifunction equilibrium problem. We obtain a strong convergence theorem of solutions in the framework of Banach spaces.
DOI : 10.22436/jnsa.009.04.12
Classification : 65J15, 65K10
Keywords: Asymptotically quasi-\(\phi\)-nonexpansive mapping, equilibrium problem, fixed point, variational inequality, iterative process.

Cheng, Peng 1 ; Min, Zhaocui 2

1 School of Mathematics and Information Science, North China University of Water Resources and Electric Power, Henan, China
2 School of Science, Hebei University of Engineering, Hebei, China
@article{JNSA_2016_9_4_a11,
     author = {Cheng, Peng and Min, Zhaocui},
     title = {Some results on fixed points of nonlinear operators and solutions of equilibrium problems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1541-1548},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2016},
     doi = {10.22436/jnsa.009.04.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.12/}
}
TY  - JOUR
AU  - Cheng, Peng
AU  - Min, Zhaocui
TI  - Some results on fixed points of nonlinear operators and solutions of equilibrium problems
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 1541
EP  - 1548
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.12/
DO  - 10.22436/jnsa.009.04.12
LA  - en
ID  - JNSA_2016_9_4_a11
ER  - 
%0 Journal Article
%A Cheng, Peng
%A Min, Zhaocui
%T Some results on fixed points of nonlinear operators and solutions of equilibrium problems
%J Journal of nonlinear sciences and its applications
%D 2016
%P 1541-1548
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.12/
%R 10.22436/jnsa.009.04.12
%G en
%F JNSA_2016_9_4_a11
Cheng, Peng; Min, Zhaocui. Some results on fixed points of nonlinear operators and solutions of equilibrium problems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1541-1548. doi : 10.22436/jnsa.009.04.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.12/

[1] Agarwal, R. P.; Cho, Y. J.; X. Qin Generalized projection algorithms for nonlinear operators, Numer. Funct. Anal. Optim., Volume 28 (2007), pp. 1197-1215

[2] Alber, Y. I. Metric and generalized projection operators in Banach spaces: properties and applications, in: A.G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, 1996

[3] Dehaish, B. A. Bin; Qin, X.; Latif, A.; Bakodah, H. Weak and strong convergence of algorithms for the sum of two accretive operators with applications, J. Nonlinear Convex Anal., Volume 16 (2015), pp. 1321-1336

[4] Blum, E.; W. Oettli From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145

[5] Bruck, R. E.; Kuczumow, T.; Reich, S. Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math., Volume 65 (1993), pp. 169-179

[6] Butnariu, D.; Reich, S.; A. J. Zaslavski Asymptotic behavior of relatively nonexpansive operators in Banach spaces , J. Appl. Anal., Volume 7 (2001), pp. 151-174

[7] Censor, Y.; S. Reich Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization, Volume 37 (1996), pp. 323-339

[8] Cho, Y. J.; Li, J.; Huang, N. J. Solvability of implicit complementarity problems, Math. Comput. Model., Volume 45 (2007), pp. 1001-1009

[9] Cho, S. Y.; Qin, X. On the strong convergence of an iterative process for asymptotically strict pseudocontractions and equilibrium problems, Appl. Math. Comput., Volume 235 (2014), pp. 430-438

[10] Cho, S. Y.; Qin, X.; L. Wang Strong convergence of a splitting algorithm for treating monotone operators, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-15

[11] Choudhury, B. S.; Kundu, S. A viscosity type iteration by weak contraction for approximating solutions of generalized equilibrium problem, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 243-251

[12] Gwinner, J.; Raciti, F. Random equilibrium problems on networks, Math. Comput. Modelling, Volume 43 (2006), pp. 880-891

[13] Hao, Y. Some results on a modified Mann iterative scheme in a re exive Banach space, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-14

[14] He, R. H. Coincidence theorem and existence theorems of solutions for a system of Ky Fan type minimax inequalities in FC-spaces, Adv. Fixed Point Theory, Volume 2 (2012), pp. 47-57

[15] Kim, J. K. Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of the asymptotically quasi-\(\phi\)-nonexpansive mappings, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-15

[16] Kim, J. K.; Cho, S. Y.; Qin, X. Some results on generalized equilibrium problems involving strictly pseudocontractive mappings, Acta Math. Sci., Volume 31 (2011), pp. 2041-2057

[17] Liu, B.; Zhang, C. Strong convergence theorems for equilibrium problems and quasi-\(\phi\)-nonexpansive mappings, Nonlinear Funct. Anal. Appl., Volume 16 (2011), pp. 365-385

[18] Ni, R. X.; Jin, J. S.; Wen, C. F. Strong convergence theorems for equilibrium problems and asymptotically quasi-\(\phi\)-nonexpansive mappings in the intermediate sense, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-23

[19] Qin, X.; Cho, Y. J.; Kang, S. M. Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. Comput. Appl. Math., Volume 225 (2009), pp. 20-30

[20] Qin, X.; Cho, Y. J.; Kang, S. M. On hybrid projection methods for asymptotically quasi-\(\phi\)-nonexpansive mappings, Appl. Math. Comput., Volume 215 (2010), pp. 3874-3883

[21] Qin, X.; Wang, L. On asymptotically quasi-\(\phi\)-nonexpansive mappings in the intermediate sense, Abst. Appl. Anal., Volume 2012 (2012), pp. 1-13

[22] Reich, S. A weak convergence theorem for the alternating method with Bregman distance, in: A.G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York (1996)

[23] T. V. Su Second-order optimality conditions for vector equilibrium problems, J. Nonlinear Funct. Anal., Volume 2015 (2015), pp. 1-31

[24] Takahashi, W.; K. Zembayashi Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal., Volume 70 (2009), pp. 45-57

[25] Wang, Z. M.; Zhang, X. Shrinking projection methods for systems of mixed variational inequalities of Browder type, systems of mixed equilibrium problems and fixed point problems, J. Nonlinear Funct. Anal., Volume 2014 (2014), pp. 1-25

[26] Wang, Z. M.; Su, Y.; Wang, D.; Dong, Y. A modified Halpern-type iteration algorithm for a family of hemi-relatively nonexpansive mappings and systems of equilibrium problems in Banach spaces, J. Comput. Appl. Math., Volume 235 (2011), pp. 2364-2371

[27] Yang, L.; Zhao, F.; Kim, J. K. Hybrid projection method for generalized mixed equilibrium problem and fixed point problem of infinite family of asymptotically quasi-\(\phi\)-nonexpansive mappings in Banach spaces, Appl. Math. Comput., Volume 218 (2012), pp. 6072-6082

[28] Yu, Q.; Fang, D.; Du, W. Solving the logit-based stochastic user equilibrium problem with elastic demand based on the extended traffic network model, Eur. J. Oper. Res., Volume 239 (2014), pp. 112-118

[29] Zhang, L.; Tong, H. An iterative method for nonexpansive semigroups, variational inclusions and generalized equilibrium problems, Adv. Fixed Point Theory, Volume 4 (2014), pp. 325-343

[30] Zhao, J.; He, S. Strong convergence theorems for equilibrium problems and quasi-\(\phi\)-asymptotically nonexpansive mappings in Banach spaces, An. St. Univ. Ovidius Constanta, Volume 19 (2011), pp. 347-364

[31] Zhao, J. Approximation of solutions to an equilibrium problem in a nonuniformly smooth Banach space, J. Inequal. Appl., Volume 2013 (2013), pp. 1-10

[32] Zhao, L. C.; Chang, S. S. Strong convergence theorems for equilibrium problems and fixed point problems of strict pseudo-contraction mappings, J. Nonlinear Sci. Appl., Volume 2 (2009), pp. 78-91

Cité par Sources :