Voir la notice de l'article provenant de la source International Scientific Research Publications
Chang, Shih-Sen 1 ; Quan, Jing 2 ; Liu, Jingai 3
@article{JNSA_2016_9_4_a9, author = {Chang, Shih-Sen and Quan, Jing and Liu, Jingai}, title = {Feasible iterative algorithms and strong convergence theorems for bi-level fixed point problems}, journal = {Journal of nonlinear sciences and its applications}, pages = {1515-1528}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2016}, doi = {10.22436/jnsa.009.04.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.10/} }
TY - JOUR AU - Chang, Shih-Sen AU - Quan, Jing AU - Liu, Jingai TI - Feasible iterative algorithms and strong convergence theorems for bi-level fixed point problems JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 1515 EP - 1528 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.10/ DO - 10.22436/jnsa.009.04.10 LA - en ID - JNSA_2016_9_4_a9 ER -
%0 Journal Article %A Chang, Shih-Sen %A Quan, Jing %A Liu, Jingai %T Feasible iterative algorithms and strong convergence theorems for bi-level fixed point problems %J Journal of nonlinear sciences and its applications %D 2016 %P 1515-1528 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.10/ %R 10.22436/jnsa.009.04.10 %G en %F JNSA_2016_9_4_a9
Chang, Shih-Sen; Quan, Jing; Liu, Jingai. Feasible iterative algorithms and strong convergence theorems for bi-level fixed point problems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1515-1528. doi : 10.22436/jnsa.009.04.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.10/
[1] Split feasibility and fixed point problems, Nonlinear anal., Volume 2014 (2014), pp. 282-322
[2] From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145
[3] Iterative oblique projection onto convex subsets and the split feasibility problem, Inverse Problems, Volume 18 (2002), pp. 441-453
[4] A unified approach for inversion problem in intensity-modulated radiation therapy, Phys. Med. Biol., Volume 51 (2006), pp. 2353-2365
[5] A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, Volume 8 (1994), pp. 221-239
[6] The multiple-sets split feasibility problem and its applications for inverse problems, Inverse Problems, Volume 21 (2005), pp. 2071-2084
[7] Perturbed projections ans subgradient projections for the multiple-sets split feasibility problem, J. Math. Anal. Appl, Volume 327 (2007), pp. 1244-1256
[8] The split common fixed point problem for directed operators, J. Convex Anal., Volume 16 (2009), pp. 587-600
[9]
[10] Strong convergence theorems of general split equality problems for quasi-nonexpansive mappings, J. Inequal. Appl., Volume 2014 (2014), pp. 1-14
[11] Multiple-set split feasibility problems for asymptotically strict pseudocontractions, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-12
[12] A modified Halpern-type iterative algorithm for totally quasi-\(\phi\)-asymptotically nonexpansive mappings with applications, Appl. Math. Comput., Volume 218 (2012), pp. 6489-6497
[13] Strong convergence theorems for the general split variational inclusion problem in Hilbert spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-14
[14] Moudafi's open question and simultaneous iterative algorithm for general split equality variational inclusion problems and general split equality optimization problems, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-17
[15] The split common fixed point problem for total asymptotically strictly pseudocontractive mappings, J. Appl. Math., Volume 2012 (2012), pp. 1-13
[16] General Split Equality Equilibrium Problems with Application to Split Optimization Problems, J. Optim Theory Appl., Volume 166 (2015), pp. 377-390
[17] General split equality problems in Hilbert spaces , Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-8
[18] Strong convergence theorems for the split variational inclusion problem in Hilbert spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-20
[19] General split feasibility problems in Hilbert spaces, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-6
[20] Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990
[21] New feasible iterative algorithms and strong convergence theorems for bilevel split equilibrium problems, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-17
[22] Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., Volume 16 (2008), pp. 899-912
[23] Split monotone variational inclusions , J. Optim. Theory Appl., Volume 150 (2011), pp. 275-283
[24] A relaxed alternating CQ algorithm for convex feasibility problems, Nonlinear Anal., Volume 79 (2013), pp. 117-121
[25] Simultaneous iterative methods for split equality problem , Trans. Math. Program. Appl., Volume 1 (2013), pp. 1-11
[26] On an open question of Moudafi for convex feasibility problem in Hilbert spaces, Taiwanese J. Math., Volume 18 (2014), pp. 371-408
[27] A variable Krasnosel'skii-Mann algorithm and the multiple-sets split feasibility problem , Inverse Problems, Volume 22 (2006), pp. 2021-2034
[28] The relaxed CQ algorithm for solving the split feasibility problem, Inverse Problems, Volume 20 (2004), pp. 1261-1266
[29] Several solution methods for the split feasibility problem, Inverse Problems, Volume 21 (2005), pp. 1791-1799
Cité par Sources :