Existence of periodic solutions for second-order nonlinear difference equations
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1505-1514.

Voir la notice de l'article provenant de la source International Scientific Research Publications

By using the critical point method, the existence of periodic solutions for second-order nonlinear difference equations is obtained. The proof is based on the Saddle Point Theorem in combination with variational technique. The problem is to solve the existence of periodic solutions of second-order nonlinear difference equations. One of our results obtained complements the result in the literature.
DOI : 10.22436/jnsa.009.04.09
Classification : 39A23
Keywords: Existence, periodic solutions, second-order, nonlinear difference equations, discrete variational theory.

Ren, Zhiguo 1 ; Li, Jie 2 ; Shi, Haiping 3

1 Department of Information Engineering, Jieyang Vocational and Technical College, Jieyang 522000, China
2 Quality Control Office, Zhongshan Torch College, Zhongshan 528436, China
3 Modern Business and Management Department, Guangdong Construction Vocational Technology Institute, Guangzhou 510440, China
@article{JNSA_2016_9_4_a8,
     author = {Ren, Zhiguo and Li, Jie and Shi, Haiping},
     title = {Existence of periodic solutions for second-order nonlinear difference equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1505-1514},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2016},
     doi = {10.22436/jnsa.009.04.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.09/}
}
TY  - JOUR
AU  - Ren, Zhiguo
AU  - Li, Jie
AU  - Shi, Haiping
TI  - Existence of periodic solutions for second-order nonlinear difference equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 1505
EP  - 1514
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.09/
DO  - 10.22436/jnsa.009.04.09
LA  - en
ID  - JNSA_2016_9_4_a8
ER  - 
%0 Journal Article
%A Ren, Zhiguo
%A Li, Jie
%A Shi, Haiping
%T Existence of periodic solutions for second-order nonlinear difference equations
%J Journal of nonlinear sciences and its applications
%D 2016
%P 1505-1514
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.09/
%R 10.22436/jnsa.009.04.09
%G en
%F JNSA_2016_9_4_a8
Ren, Zhiguo; Li, Jie; Shi, Haiping. Existence of periodic solutions for second-order nonlinear difference equations. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1505-1514. doi : 10.22436/jnsa.009.04.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.09/

[1] Agarwal, R. P. Difference Equations and Inequalities: Theory, Methods and Applications, Marcel Dekker, New York, 2000

[2] Agarwal, R. P.; P. J. Y. Wong Advanced Topics in Difference Equations, Kluwer Academic Publishers, Dordrecht, 1997

[3] Ahlbrandt, C. D.; Peterson, A. C. Discrete Hamiltonian Systems: Difference Equations, Continued Fraction and Riccati Equations, Kluwer Academic Publishers, Dordrecht, 1996

[4] Cai, X. C.; Yu, J. S. Existence theorems of periodic solutions for second-order nonlinear difference equations, Adv. Difference Equ., Volume 2008 (2008), pp. 1-11

[5] Castro, A.; Shivaji, R. Nonnegative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric, Comm. Partial Differential Equations, Volume 14 (1989), pp. 1091-1100

[6] Chen, S. Z. Disconjugacy, disfocality, and oscillation of second order difference equation, J. Differential Equations, Volume 107 (1994), pp. 383-394

[7] Esteban, J. R.; Vázquez, J. L. On the equation of turbulent filtration in one-dimensional porous media, Nonlinear Anal., Volume 10 (1986), pp. 1303-1325

[8] Guo, Z. M.; J. S. Yu Existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China Math., Volume 46 (2003), pp. 506-515

[9] Guo, Z. M.; Yu, J. S. The existence of periodic and subharmonic solutions of subquadratic second order difference equations, J. London Math. Soc., Volume 68 (2003), pp. 419-430

[10] Guo, Z. M.; Yu, J. S. Applications of critical point theory to difference equations, Fields Inst. Commun., Volume 42 (2004), pp. 187-200

[11] Kaper, H. G.; Knaap, M.; Kwong, M. K. Existence theorems for second order boundary value problems, Differential Integral Equations, Volume 4 (1991), pp. 543-554

[12] Liu, Y. J.; Ge, W. G. Twin positive solutions of boundary value problems for finite difference equations with p-Laplacian operator, J. Math. Anal. Appl., Volume 278 (2003), pp. 551-561

[13] Matsunaga, H.; Hara, T.; Sakata, S. Global attractivity for a nonlinear difference equation with variable delay, Computers Math. Appl., Volume 41 (2001), pp. 543-551

[14] Mawhin, H.; Willem, M. Critical Point Theory and Hamiltonian Systems, Springer, New York, 1989

[15] Peng, M. S.; Xu, Q. L.; Huang, L. H.; Ge, W. G. Asymptotic and oscillatory behavior of solutions of certain second order nonlinear difference equations, Comput. Math. Appl., Volume 37 (1999), pp. 9-18

[16] Rabinowitz, P. H. Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., Volume 31 (1978), pp. 157-184

[17] Shi, H. P.; Ling, W. P.; Long, Y. H.; Zhang, H. Q. Periodic and subharmonic solutions for second order nonlinear functional difference equations, Commun. Math. Anal., Volume 5 (2008), pp. 50-59

[18] Smets, D.; Willem, M. Solitary waves with prescribed speed on infinite lattices, J. Funct. Anal., Volume 149 (1997), pp. 266-275

[19] Xu, Y. T.; Guo, Z. M. Applications of a \(Z_p\) index theory to periodic solutions for a class of functional differential equations, J. Math. Anal. Appl., Volume 257 (2001), pp. 189-205

[20] Yu, J. S.; Guo, Z. M. On boundary value problems for a discrete generalized Emden-Fowler equation, J. Differential Equations, Volume 231 (2006), pp. 18-31

[21] Yu, J. S.; Guo, Z. M.; Zou, X. F. Periodic solutions of second order self-adjoint difference equations, J. London Math. Soc., Volume 71 (2005), pp. 146-160

[22] Zhang, R. Y.; Wang, Z. C.; Yu, J. S. Necessary and sufficient conditions for the existence of positive solutions of nonlinear difference equations, Fields Inst. Commun., Volume 42 (2004), pp. 385-396

[23] Zhou, Z.; Yu, J. S.; Chen, Y. M. Homoclinic solutions in periodic difference equations with saturable nonlinearity, Sci. China Math., Volume 54 (2011), pp. 83-93

[24] Zhou, Z.; Yu, J. S.; Z. M. Guo Periodic solutions of higher-dimensional discrete systems, Proc. Roy. Soc. Edinburgh Sect. A, Volume 134 (2004), pp. 1013-1022

[25] Zhou, Z.; Zhang, Q. Q. Uniform stability of nonlinear difference systems, J. Math. Anal. Appl., Volume 225 (1998), pp. 486-500

Cité par Sources :