q-Durrmeyer operators based on Pólya distribution
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1497-1504.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We introduce a q analogue of Durrmeyer type modification of Bernstein operators based on Pólya distributions. We study the ordinary approximation properties of operators using modulus of continuity and Peetre K-functional of second order. Further, we establish the weighted approximation properties for these operators.
DOI : 10.22436/jnsa.009.04.08
Classification : 41A25, 41A35
Keywords: Pólya distribution, q-integers, q-Bernstein operators, modulus of continuity, Peetre K-functional, weighted modulus of continuity.

Gupta, Vijay 1 ; Rassias, Themistocles M. 2 ; Sharma, Honey 3

1 Department of Mathematics, Netaji Subhas Institute of Technology Sector 3 Dwarka, New Delhi-110078, India
2 Department of Mathematics, National Technical University of Athens, Zografou Campus, 157 80, Athens, Greece
3 Department of Applied Sciences, Gulzar Group of Institutes, Khanna, Ludhiana, Punjab, India
@article{JNSA_2016_9_4_a7,
     author = {Gupta, Vijay and Rassias, Themistocles M. and Sharma, Honey},
     title = {q-Durrmeyer operators based on {P\'olya} distribution},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1497-1504},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2016},
     doi = {10.22436/jnsa.009.04.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.08/}
}
TY  - JOUR
AU  - Gupta, Vijay
AU  - Rassias, Themistocles M.
AU  - Sharma, Honey
TI  - q-Durrmeyer operators based on Pólya distribution
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 1497
EP  - 1504
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.08/
DO  - 10.22436/jnsa.009.04.08
LA  - en
ID  - JNSA_2016_9_4_a7
ER  - 
%0 Journal Article
%A Gupta, Vijay
%A Rassias, Themistocles M.
%A Sharma, Honey
%T q-Durrmeyer operators based on Pólya distribution
%J Journal of nonlinear sciences and its applications
%D 2016
%P 1497-1504
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.08/
%R 10.22436/jnsa.009.04.08
%G en
%F JNSA_2016_9_4_a7
Gupta, Vijay; Rassias, Themistocles M.; Sharma, Honey. q-Durrmeyer operators based on Pólya distribution. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1497-1504. doi : 10.22436/jnsa.009.04.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.08/

[1] Aral, A.; Gupta, V.; R. P. Agarwal Applications of q Calculus in Operator Theory, Springer, New York, 2013

[2] Büyükyazıcı, I.; Sharma, H. Approximation properties of two-dimensional q-Bernstein-Chlodowsky-Durrmeyer operators, Numer. Funct. Anal. Optim., Volume 33 (2012), pp. 1351-1371

[3] Vore, R. A. De; Lorentz, G. G. Constructive Approximation, Springer-Verlag, Berlin, 1993

[4] Ditzian, Z.; Totik, V. Moduli of Smoothness, Springer-Verlag, New York, 1987

[5] Finta, Z.; Gupta, V. Approximation by q-Durrmeyer operators, J. Appl. Math. Comput., Volume 29 (2009), pp. 401-415

[6] Gupta, V. Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput., Volume 197 (2008), pp. 172-178

[7] Gupta, V.; Finta, Z. On certain q-Durrmeyer type operators, Appl. Math. Comput., Volume 209 (2009), pp. 415-420

[8] Gupta, V.; Heping, W. The rate of convergence of q-Durrmeyer operators for 0 < q < 1, Math. Methods Appl. Sci., Volume 31 (2008), pp. 1946-1955

[9] Gupta, V.; Rassias, T. M. Lupaş-Durrmeyer operators based on Pólya distribution, Banach J. Math. Anal., Volume 8 (2014), pp. 146-155

[10] Gupta, V.; Sharma, H. Recurrence formula and better approximation for q-Durrmeyer Operators, Lobachevskii J. Math., Volume 32 (2011), pp. 140-145

[11] Gupta, V.; Sharma, H.; Kim, T.; Lee, S. Properties of q-analogue of Beta operator, Adv. Difference Equ., Volume 2012 (2012), pp. 1-16

[12] A. Lupaş A q-analogue of the Bernstein operator, Seminar on Numerical and Statistical Calculus, Cluj-Napoca, Volume 9 (1987), pp. 85-92

[13] Nowak, G. Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl., Volume 350 (2009), pp. 50-55

[14] Nowak, G.; Gupta, V. The rate of pointwise approximation of possitive linear operators based on q-integer, Ukrainian Math. J., Volume 63 (2011), pp. 403-415

[15] Phillips, G. M. Bernstein polynomials based on the q-integers, Ann. Numer. Math., Volume 4 (1997), pp. 511-518

[16] Stancu, D. D. Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., Volume 13 (1968), pp. 1173-1194

Cité par Sources :