Voir la notice de l'article provenant de la source International Scientific Research Publications
Gupta, Vijay 1 ; Rassias, Themistocles M. 2 ; Sharma, Honey 3
@article{JNSA_2016_9_4_a7, author = {Gupta, Vijay and Rassias, Themistocles M. and Sharma, Honey}, title = {q-Durrmeyer operators based on {P\'olya} distribution}, journal = {Journal of nonlinear sciences and its applications}, pages = {1497-1504}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2016}, doi = {10.22436/jnsa.009.04.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.08/} }
TY - JOUR AU - Gupta, Vijay AU - Rassias, Themistocles M. AU - Sharma, Honey TI - q-Durrmeyer operators based on Pólya distribution JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 1497 EP - 1504 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.08/ DO - 10.22436/jnsa.009.04.08 LA - en ID - JNSA_2016_9_4_a7 ER -
%0 Journal Article %A Gupta, Vijay %A Rassias, Themistocles M. %A Sharma, Honey %T q-Durrmeyer operators based on Pólya distribution %J Journal of nonlinear sciences and its applications %D 2016 %P 1497-1504 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.08/ %R 10.22436/jnsa.009.04.08 %G en %F JNSA_2016_9_4_a7
Gupta, Vijay; Rassias, Themistocles M.; Sharma, Honey. q-Durrmeyer operators based on Pólya distribution. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1497-1504. doi : 10.22436/jnsa.009.04.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.08/
[1] Applications of q Calculus in Operator Theory, Springer, New York, 2013
[2] Approximation properties of two-dimensional q-Bernstein-Chlodowsky-Durrmeyer operators, Numer. Funct. Anal. Optim., Volume 33 (2012), pp. 1351-1371
[3] Constructive Approximation, Springer-Verlag, Berlin, 1993
[4] Moduli of Smoothness, Springer-Verlag, New York, 1987
[5] Approximation by q-Durrmeyer operators, J. Appl. Math. Comput., Volume 29 (2009), pp. 401-415
[6] Some approximation properties of q-Durrmeyer operators, Appl. Math. Comput., Volume 197 (2008), pp. 172-178
[7] On certain q-Durrmeyer type operators, Appl. Math. Comput., Volume 209 (2009), pp. 415-420
[8] The rate of convergence of q-Durrmeyer operators for 0 < q < 1, Math. Methods Appl. Sci., Volume 31 (2008), pp. 1946-1955
[9] Lupaş-Durrmeyer operators based on Pólya distribution, Banach J. Math. Anal., Volume 8 (2014), pp. 146-155
[10] Recurrence formula and better approximation for q-Durrmeyer Operators, Lobachevskii J. Math., Volume 32 (2011), pp. 140-145
[11] Properties of q-analogue of Beta operator, Adv. Difference Equ., Volume 2012 (2012), pp. 1-16
[12] A q-analogue of the Bernstein operator, Seminar on Numerical and Statistical Calculus, Cluj-Napoca, Volume 9 (1987), pp. 85-92
[13] Approximation properties for generalized q-Bernstein polynomials, J. Math. Anal. Appl., Volume 350 (2009), pp. 50-55
[14] The rate of pointwise approximation of possitive linear operators based on q-integer, Ukrainian Math. J., Volume 63 (2011), pp. 403-415
[15] Bernstein polynomials based on the q-integers, Ann. Numer. Math., Volume 4 (1997), pp. 511-518
[16] Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., Volume 13 (1968), pp. 1173-1194
Cité par Sources :