A viscosity of Cesaro mean approximation method for split generalized equilibrium, variational inequality and fixed point problems
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1475-1496.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce and study an iterative viscosity approximation method by modified Cesàro mean approximation for finding a common solution of split generalized equilibrium, variational inequality and fixed point problems. Under suitable conditions, we prove a strong convergence theorem for the sequences generated by the proposed iterative scheme. The results presented in this paper generalize, extend and improve the corresponding results of Shimizu and Takahashi [K. Shimoji, W. Takahashi, Taiwanese J. Math., 5 (2001), 387-404].
DOI : 10.22436/jnsa.009.04.07
Classification : 47H10, 47J25, 65K10.
Keywords: Fixed point, variational inequality, viscosity approximation, nonexpansive mapping, Hilbert space, split generalized equilibrium problem, Cesàro mean approximation method.

Deepho, Jitsupa 1 ; Martínez-Moreno, Juan 2 ; Kumam, Poom 3

1 Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thrung Khru, Bangkok 10140, Thailand;Department of Mathematics, Faculty of Science, University of Jaén, Campus Las Lagunillas, s/n, 23071 Jaén, Spain
2 Department of Mathematics, Faculty of Science, University of Jaén, Campus Las Lagunillas, s/n, 23071 Jaén, Spain
3 Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thrung Khru, Bangkok 10140, Thailand;Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkuts University of Technology Thonburi (KMUTT), 126 Pracha Uthit Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand
@article{JNSA_2016_9_4_a6,
     author = {Deepho, Jitsupa and Mart{\'\i}nez-Moreno, Juan and Kumam, Poom},
     title = {A viscosity of {Cesaro} mean approximation method for split generalized equilibrium, variational inequality and fixed point problems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1475-1496},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2016},
     doi = {10.22436/jnsa.009.04.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.07/}
}
TY  - JOUR
AU  - Deepho, Jitsupa
AU  - Martínez-Moreno, Juan
AU  - Kumam, Poom
TI  - A viscosity of Cesaro mean approximation method for split generalized equilibrium, variational inequality and fixed point problems
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 1475
EP  - 1496
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.07/
DO  - 10.22436/jnsa.009.04.07
LA  - en
ID  - JNSA_2016_9_4_a6
ER  - 
%0 Journal Article
%A Deepho, Jitsupa
%A Martínez-Moreno, Juan
%A Kumam, Poom
%T A viscosity of Cesaro mean approximation method for split generalized equilibrium, variational inequality and fixed point problems
%J Journal of nonlinear sciences and its applications
%D 2016
%P 1475-1496
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.07/
%R 10.22436/jnsa.009.04.07
%G en
%F JNSA_2016_9_4_a6
Deepho, Jitsupa; Martínez-Moreno, Juan; Kumam, Poom. A viscosity of Cesaro mean approximation method for split generalized equilibrium, variational inequality and fixed point problems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1475-1496. doi : 10.22436/jnsa.009.04.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.07/

[1] Antipin, A. S. Methods for solving variational inequlities with related constraints, Comput. Math. Math. Phys., Volume 40 (2007), pp. 1239-1254

[2] Aubin, J.-P. Optima and Equilibria: An Introduction to Nonlinear Analysis, Springer-Verlag, France, 1998

[3] Baillon, J. B. Un theoreme de type ergodique pour les contractions non lineairs dans un espaces de Hilbert , C.R. Acad. Sci. Paris Ser., Volume 280 (1975), pp. 1511-1514

[4] Bruck, R. E. On the Convex Approximation Property and the Asymptotic Behavior of Nonlinear Contractions in Banach Spaces, Israel J. Math., Volume 38 (1981), pp. 304-314

[5] Byrne, C.; Censor, Y.; Gibali, A.; Reich, S. The split common null point problem, J. Nonlinear Convex Anal., Volume 13 (2012), pp. 759-775

[6] Ceng, L. C.; Yao, J. C. An extragradient like approximation method for variational inequality problems and fixed point problems, Appl. Math. Comput., Volume 190 (2007), pp. 205-215

[7] Ceng, L. C.; Yao, J. C. On the convergence analysis of inexact hybrid extragradient proximal point algorithms for maximal monotone operators, J. Comput. Appl. Math., Volume 217 (2008), pp. 326-338

[8] Ceng, L. C.; Yao, J. C. Approximate proximal algorithms for generalized variational inequalities with pseudomonotone multifunctions, J. Comput. Appl. Math., Volume 213 (2008), pp. 423-438

[9] Censor, Y.; Elfving, T. A multiprojection algorithm using Bregman projections in product space, Numer. Algorithms, Volume 8 (1994), pp. 221-239

[10] Cianciaruso, F.; Marino, G.; Muglia, L.; Yao, Y. A hybrid projection algorithm for finding solutions of mixed equilibrium problem and variational inequality problem, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-19

[11] Deutsch, F.; Yamada, I. Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings, Numer. Funct. Anal. Optim., Volume 19 (1998), pp. 33-56

[12] Eicke, B. Iterative methods for convexly constrained ill-posed problem in Hilbert space, Numer. Funct. Anal. Optim., Volume 13 (1992), pp. 413-429

[13] Facchinei, F.; Pang, J. S. Finite-dimensional variational inequalities and complementarity problems, Springer Series in Operations Research, vols. I and II. Springer, New York, 2003

[14] R. Glowinski Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984

[15] Goebel, K.; Kirk, W. A. Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990

[16] Jaiboon, C.; Kumam, P.; Humphries, H. W. Weak convergence theorem by extragradient method for variational inequality, equilibrium problems and fixed point problems, Bull. Malaysian Math. Sci. Soc., Volume 2 (2009), pp. 173-185

[17] Kazmi, K. R.; Rizvi, S. H. Iterative approximation of a common solution of a split generalized equilibrium problem and a fixed point problem for nonexpansive semigroup, Math. Sci., Volume 7 (2013), pp. 1-10

[18] Korpelevich, G. M. An extragradient method for finding saddle points and for other problems, Ekonom. i Mat. Metody, Volume 12 (1976), pp. 747-756

[19] Landweber, L. An iterative formula for Fredholm integral equations of the first kind, Amer. J. Math., Volume 73 (1951), pp. 615-625

[20] Liu, F.; Nasheed, M. Z. Regularization of nonlinear ill-posed variational inequalities and convergence rates, SetValued Anal., Volume 6 (1998), pp. 313-344

[21] Mahdioui, H.; O. Chadli On a system of generalized mixed equilibrium problems involving variational-like inequalities in Banach spaces: existence and algorithmic aspects, Adv. Oper. Res., Volume 2012 (2012), pp. 1-18

[22] Marino, G.; H. K. Xu General Iterative Method for Nonexpansive Mappings in Hilbert Spaces, J. Math. Anal. Appl., Volume 318 (2006), pp. 43-52

[23] Moudafi, A. Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55

[24] A. Moudafi The split common fixed point problem for demicontractive mappings, Inverse Problems, Volume 26 (2010), pp. 1-6

[25] Moudafi, A. Split monotone variational inclusions, J. Optim. Theory Appl., Volume 150 (2011), pp. 275-283

[26] Z. Opial Weak Convergence of Successive Approximations for Nonexpansive Mappings, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 591-597

[27] Osilike, M. O.; Igbokwe, D. I. Weak and Strong Convergence Theorems for Fixed Points of Pseudocontractions and Solutions of Monotone Type Operator Equations, Computers & Math. Appl., Volume 40 (2000), pp. 559-567

[28] Rockafellar, R. T. Monotone operators and the proximal point algorithm, SIAM J. Control Optim., Volume 14 (1976), pp. 877-898

[29] Shimizu, T.; Takahashi, W. Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl., Volume 211 (1997), pp. 71-83

[30] Shimoji, K.; Takahashi, W. Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math., Volume 5 (2001), pp. 387-404

[31] Stampacchia, G. Formes bilineaires coercitivies sur les ensembles convexes, C. R. Acad. Sci. Paris, Volume 258 (1964), pp. 4413-4416

[32] Suzuki, T. Strong convergence theorems for an infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., Volume 1 (2005), pp. 103-123

[33] Suzuki, T. Strong Convergence of Krasnoselskii and Mann's Type Sequences for One-Parameter Nonexpansive Semigroups Without Bochner Integrals, J. Math. Anal. Appl., Volume 305 (2005), pp. 227-239

Cité par Sources :