Voir la notice de l'article provenant de la source International Scientific Research Publications
Deepho, Jitsupa 1 ; Martínez-Moreno, Juan 2 ; Kumam, Poom 3
@article{JNSA_2016_9_4_a6, author = {Deepho, Jitsupa and Mart{\'\i}nez-Moreno, Juan and Kumam, Poom}, title = {A viscosity of {Cesaro} mean approximation method for split generalized equilibrium, variational inequality and fixed point problems}, journal = {Journal of nonlinear sciences and its applications}, pages = {1475-1496}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2016}, doi = {10.22436/jnsa.009.04.07}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.07/} }
TY - JOUR AU - Deepho, Jitsupa AU - Martínez-Moreno, Juan AU - Kumam, Poom TI - A viscosity of Cesaro mean approximation method for split generalized equilibrium, variational inequality and fixed point problems JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 1475 EP - 1496 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.07/ DO - 10.22436/jnsa.009.04.07 LA - en ID - JNSA_2016_9_4_a6 ER -
%0 Journal Article %A Deepho, Jitsupa %A Martínez-Moreno, Juan %A Kumam, Poom %T A viscosity of Cesaro mean approximation method for split generalized equilibrium, variational inequality and fixed point problems %J Journal of nonlinear sciences and its applications %D 2016 %P 1475-1496 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.07/ %R 10.22436/jnsa.009.04.07 %G en %F JNSA_2016_9_4_a6
Deepho, Jitsupa; Martínez-Moreno, Juan; Kumam, Poom. A viscosity of Cesaro mean approximation method for split generalized equilibrium, variational inequality and fixed point problems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1475-1496. doi : 10.22436/jnsa.009.04.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.07/
[1] Methods for solving variational inequlities with related constraints, Comput. Math. Math. Phys., Volume 40 (2007), pp. 1239-1254
[2] Optima and Equilibria: An Introduction to Nonlinear Analysis, Springer-Verlag, France, 1998
[3] Un theoreme de type ergodique pour les contractions non lineairs dans un espaces de Hilbert , C.R. Acad. Sci. Paris Ser., Volume 280 (1975), pp. 1511-1514
[4] On the Convex Approximation Property and the Asymptotic Behavior of Nonlinear Contractions in Banach Spaces, Israel J. Math., Volume 38 (1981), pp. 304-314
[5] The split common null point problem, J. Nonlinear Convex Anal., Volume 13 (2012), pp. 759-775
[6] An extragradient like approximation method for variational inequality problems and fixed point problems, Appl. Math. Comput., Volume 190 (2007), pp. 205-215
[7] On the convergence analysis of inexact hybrid extragradient proximal point algorithms for maximal monotone operators, J. Comput. Appl. Math., Volume 217 (2008), pp. 326-338
[8] Approximate proximal algorithms for generalized variational inequalities with pseudomonotone multifunctions, J. Comput. Appl. Math., Volume 213 (2008), pp. 423-438
[9] A multiprojection algorithm using Bregman projections in product space, Numer. Algorithms, Volume 8 (1994), pp. 221-239
[10] A hybrid projection algorithm for finding solutions of mixed equilibrium problem and variational inequality problem, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-19
[11] Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings, Numer. Funct. Anal. Optim., Volume 19 (1998), pp. 33-56
[12] Iterative methods for convexly constrained ill-posed problem in Hilbert space, Numer. Funct. Anal. Optim., Volume 13 (1992), pp. 413-429
[13] Finite-dimensional variational inequalities and complementarity problems, Springer Series in Operations Research, vols. I and II. Springer, New York, 2003
[14] Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984
[15] Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990
[16] Weak convergence theorem by extragradient method for variational inequality, equilibrium problems and fixed point problems, Bull. Malaysian Math. Sci. Soc., Volume 2 (2009), pp. 173-185
[17] Iterative approximation of a common solution of a split generalized equilibrium problem and a fixed point problem for nonexpansive semigroup, Math. Sci., Volume 7 (2013), pp. 1-10
[18] An extragradient method for finding saddle points and for other problems, Ekonom. i Mat. Metody, Volume 12 (1976), pp. 747-756
[19] An iterative formula for Fredholm integral equations of the first kind, Amer. J. Math., Volume 73 (1951), pp. 615-625
[20] Regularization of nonlinear ill-posed variational inequalities and convergence rates, SetValued Anal., Volume 6 (1998), pp. 313-344
[21] On a system of generalized mixed equilibrium problems involving variational-like inequalities in Banach spaces: existence and algorithmic aspects, Adv. Oper. Res., Volume 2012 (2012), pp. 1-18
[22] General Iterative Method for Nonexpansive Mappings in Hilbert Spaces, J. Math. Anal. Appl., Volume 318 (2006), pp. 43-52
[23] Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55
[24] The split common fixed point problem for demicontractive mappings, Inverse Problems, Volume 26 (2010), pp. 1-6
[25] Split monotone variational inclusions, J. Optim. Theory Appl., Volume 150 (2011), pp. 275-283
[26] Weak Convergence of Successive Approximations for Nonexpansive Mappings, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 591-597
[27] Weak and Strong Convergence Theorems for Fixed Points of Pseudocontractions and Solutions of Monotone Type Operator Equations, Computers & Math. Appl., Volume 40 (2000), pp. 559-567
[28] Monotone operators and the proximal point algorithm, SIAM J. Control Optim., Volume 14 (1976), pp. 877-898
[29] Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl., Volume 211 (1997), pp. 71-83
[30] Strong convergence to common fixed points of infinite nonexpansive mappings and applications, Taiwanese J. Math., Volume 5 (2001), pp. 387-404
[31] Formes bilineaires coercitivies sur les ensembles convexes, C. R. Acad. Sci. Paris, Volume 258 (1964), pp. 4413-4416
[32] Strong convergence theorems for an infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., Volume 1 (2005), pp. 103-123
[33] Strong Convergence of Krasnoselskii and Mann's Type Sequences for One-Parameter Nonexpansive Semigroups Without Bochner Integrals, J. Math. Anal. Appl., Volume 305 (2005), pp. 227-239
Cité par Sources :