Dynamics and behavior of a higher order rational difference equation
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1463-1474.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We study the global result, boundedness, and periodicity of solutions of the difference equation
$x_{n+1} = a +\frac{bx_{n-l} + cx_{n-k}}{dx_{n-l} + ex_{n-k}};\qquad n = 0; 1; ... ;$
where the parameters a; b; c; d, and e are positive real numbers and the initial conditions $x_{-t}; x_{-t+1}; ...; x_{-1}$ and $x_0$ are positive real numbers where $t = \max\{l; k\}; l \neq k$.
DOI : 10.22436/jnsa.009.04.06
Classification : 39A10, 39A11, 39A20
Keywords: Rational difference equations, rational systems, periodicity.

Elsayed, E. M. 1

1 Mathematics Department, Faculty of Science, King AbdulAziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
@article{JNSA_2016_9_4_a5,
     author = {Elsayed, E. M.},
     title = {Dynamics and behavior of a higher order rational difference equation},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1463-1474},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2016},
     doi = {10.22436/jnsa.009.04.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.06/}
}
TY  - JOUR
AU  - Elsayed, E. M.
TI  - Dynamics and behavior of a higher order rational difference equation
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 1463
EP  - 1474
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.06/
DO  - 10.22436/jnsa.009.04.06
LA  - en
ID  - JNSA_2016_9_4_a5
ER  - 
%0 Journal Article
%A Elsayed, E. M.
%T Dynamics and behavior of a higher order rational difference equation
%J Journal of nonlinear sciences and its applications
%D 2016
%P 1463-1474
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.06/
%R 10.22436/jnsa.009.04.06
%G en
%F JNSA_2016_9_4_a5
Elsayed, E. M. Dynamics and behavior of a higher order rational difference equation. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1463-1474. doi : 10.22436/jnsa.009.04.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.06/

[1] Agarwal, R. P.; Elsayed, E. M. Periodicity and stability of solutions of higher order rational difference equation, Adv. Stud. Contemp. Math., Volume 17 (2008), pp. 181-201

[2] M. Aloqeili Dynamics of a rational difference equation, Appl. Math. Comput., Volume 176 (2006), pp. 768-774

[3] C. Çinar On the positive solutions of the difference equation \(x_{n+1} =\frac{ ax_{n-1}}{ 1 + bx_nx_{n-1}}\), Appl. Math. Comput., Volume 156 (2004), pp. 587-590

[4] Dehghan, M.; Mazrooei-sebdani, R. Dynamics of \(x_{n+1} =\frac{ x_{n-2k+1}}{ x_{n-2k+1} + \alpha x_{n-2l}}\) , Appl. Math. Comput., Volume 185 (2007), pp. 464-472

[5] Din, Q.; Elsayed, E. M. Stability analysis of a discrete ecological model, Comput. Ecol. Software, Volume 4 (2014), pp. 89-103

[6] Elabbasy, E. M.; El-Metwally, H.; Elsayed, E. M. On the difference equation \(x_{n+1} = ax_n - \frac{ bx_n}{ cx_{n }- dx_{n-1}}\), Adv. Differ. Equ., Volume 2006 (2006), pp. 1-10

[7] Elabbasy, E. M.; El-Metwally, H.; Elsayed, E. M. Global attractivity and periodic character of a fractional difference equation of order three , Yokohama Math. J., Volume 53 (2007), pp. 89-100

[8] Elabbasy, E. M.; El-Metwally, H.; E. M. Elsayed On the difference equations\( x_{n+1} = \frac{\alpha x_{n-k}}{ \beta + \gamma\Pi^k_{ i=0} x_{n-i}}\), J. Concr. Appl. Math., Volume 5 (2007), pp. 101-113

[9] Elabbasy, E. M.; El-Metwally, H.; Elsayed, E. M. Qualitative behavior of higher order difference equation, Soochow J. Math., Volume 33 (2007), pp. 861-873

[10] Elabbasy, E. M.; El-Metwally, H.; Elsayed, E. M. Some Properties and Expressions of Solutions for a Class of Nonlinear Difference Equation, Util. Math., Volume 87 (2012), pp. 93-110

[11] El-Metwally, H.; El-Afifi, M. M. On the behavior of some extension forms of some population models, Chaos Solitons Fractals, Volume 36 (2008), pp. 104-114

[12] El-Metwally, H.; Elsayed, E. M. Solution and behavior of a third rational difference equation, Util. Math., Volume 88 (2012), pp. 27-42

[13] El-Metwally, H.; Grove, E. A.; G. Ladas On the difference equation \(y_{n+1} = \frac{y_{n-(2k+1)} + p}{ y_{n-(2k+1) }+ qy_{n-2l}}\) , Proceedings of the 6th ICDE, Taylor and Francis, London, 2004

[14] El-Moneam, M. A. On the dynamics of the higher order nonlinear rational difference equation, Math. Sci. Lett., Volume 3 (2014), pp. 121-129

[15] El-Moneam, M. A. On the dynamics of the solutions of the rational recursive sequences , Br. J. Math. Comput. Sci., Volume 5 (2015), pp. 654-665

[16] Elsayed, E. M. On the solution of recursive sequence of order two, Fasc. Math., Volume 40 (2008), pp. 5-13

[17] Elsayed, E. M. A solution form of a class of rational difference equations, Int. J. Nonlinear Sci., Volume 8 (2009), pp. 402-411

[18] E. M. Elsayed Dynamics of recursive sequence of order two, Kyungpook Math. J., Volume 50 (2010), pp. 483-497

[19] Elsayed, E. M. Solutions of rational difference system of order two, Math. Comput. Modelling, Volume 55 (2012), pp. 378-384

[20] Elsayed, E. M. Behavior and expression of the solutions of some rational difference equations, J. Comput. Anal. Appl., Volume 15 (2013), pp. 73-81

[21] Elsayed, E. M. Solution for systems of difference equations of rational form of order two, Comput. Appl. Math., Volume 33 (2014), pp. 751-765

[22] Elsayed, E. M. On the solutions and periodic nature of some systems of difference equations, Int. J. Biomath., Volume 7 (2014), pp. 1-26

[23] Elsayed, E. M. New method to obtain periodic solutions of period two and three of a rational difference equation, Nonlinear Dyn., Volume 79 (2015), pp. 241-250

[24] Elsayed, E. M. The expressions of solutions and periodicity for some nonlinear systems of rational difference equations, Adv. Stud. Contemp. Math., Volume 25 (2015), pp. 341-367

[25] Elsayed, E. M.; El-Dessoky, M. M. Dynamics and global behavior for a fourth-order rational difference equation, Hacet. J. Math. Stat., Volume 42 (2013), pp. 479-494

[26] Elsayed, E. M.; El-Metwally, H. Stability and solutions for rational recursive sequence of order three, J. Comput. Anal. Appl., Volume 17 (2014), pp. 305-315

[27] Elsayed, E. M.; El-Metwally, H. Global behavior and periodicity of some difference equations, J. Comput. Anal. Appl., Volume 19 (2015), pp. 298-309

[28] Hamza, A. E.; Barbary, S. G. Attractivity of the recursive sequence \(x_{n+1} = (\alpha-\beta x_n)F(x_{n-1};... ; x_{n-k})\), Math. Comput. Modelling, Volume 48 (2008), pp. 1744-1749

[29] Jana, D.; Elsayed, E. M. Interplay between strong Allee effect, harvesting and hydra effect of a single population discrete-time system, Int. J. Biomath., Volume 9 (2016), pp. 1-25

[30] Khaliq, A.; E. M. Elsayed The dynamics and solution of some difference equations, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 1052-1063

[31] Khan, A. Q.; Qureshi, M. N.; Din, Q. Asymptotic behavior of an anti-competitive system of rational difference equations, Life Sci. J., Volume 11 (2014), pp. 16-20

[32] Kocić, V. L.; Ladas, G. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic Publishers Group, Dordrecht, 1993

[33] Kulenovic, M. R.; Ladas, G. Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman & Hall/CRC Press, Florida, 2002

[34] Rafiq, A. Convergence of an iterative scheme due to Agarwal et al., Rostock. Math. Kolloq., Volume 61 (2006), pp. 95-105

[35] Saleh, M.; Aloqeili, M. On the difference equation \(x_{n+1} = A+ \frac{x_n}{ x_{n-k}}\), Appl. Math. Comput., Volume 171 (2005), pp. 862-869

[36] Saleh, M.; M. Aloqeili On the difference equation \(y_{n+1} = A +\frac{ y_n}{ y_{n-k}}\) , with \(A < 0\), Appl. Math. Comput., Volume 176 (2006), pp. 359-363

[37] Simsek, D.; Cinar, C.; Yalcinkaya, I. On the recursive sequence\( x_{n+1} = \frac{x_{n-3}}{ 1+x_{n-1}}\), Int. J. Contemp. Math. Sci., Volume 1 (2006), pp. 475-480

[38] Touafek, N. On a second order rational difference equation, Hacet. J. Math. Stat., Volume 41 (2012), pp. 867-874

[39] Touafek, N.; Elsayed, E. M. On the solutions of systems of rational difference equations, Math. Comput. Modelling, Volume 55 (2012), pp. 1987-1997

[40] Wang, C. Y.; Gong, F.; Wang, S.; LI, L. R.; Shi, Q. H. Asymptotic behavior of equilibrium point for a class of nonlinear difference equation, Adv. Difference Equ., Volume 2009 (2009), pp. 1-8

[41] Wang, C. Y.; Wang, S.; Wang, Z.; Gong, F.; Wang, R. Asymptotic stability for a class of nonlinear difference equation, Discrete Dyn. Nat. Soc., Volume 2010 (2010), pp. 1-10

[42] Yalçinkaya, I. On the difference equation \(x_{n+1} = \alpha +\frac{ x_{n-m} }{x^k_ n}\), Discrete Dyn. Nat. Soc., Volume 2008 (2008), pp. 1-8

[43] Yalçinkaya, I.; Cinar, C. On the dynamics of the difference equation \(x_{n+1} = \frac{ax_{n-k}}{ b + cx^p_ n}\) , Fasc. Math., Volume 42 (2009), pp. 141-148

[44] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence\( x_{n+1} = \frac{\alpha + \beta x_n + \gamma x_{n-1}}{ A + Bx_n + Cx_{n-1}}\), Comm. Appl. Nonlinear Anal., Volume 12 (2005), pp. 15-28

[45] Zayed, E. M. E.; El-Moneam, M. A. On the rational recursive sequence\( x_{n+1} = ax_n - \frac{ bx_n}{ cx_{n} - dx_{n-k}}\), Comm. Appl. Nonlinear Anal., Volume 15 (2008), pp. 47-57

[46] Zayed, E. M. E.; M. A. El-Moneam On the global asymptotic stability for a rational recursive sequence, Iran. J. Sci. Technol. Trans. A Sci., Volume 35 (2011), pp. 333-339

Cité par Sources :