Voir la notice de l'article provenant de la source International Scientific Research Publications
Boureghda, Abdellatif 1
@article{JNSA_2016_9_4_a3, author = {Boureghda, Abdellatif}, title = {Solution to an ice melting cylindrical problem}, journal = {Journal of nonlinear sciences and its applications}, pages = {1440-1452}, publisher = {mathdoc}, volume = {9}, number = {4}, year = {2016}, doi = {10.22436/jnsa.009.04.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.04/} }
TY - JOUR AU - Boureghda, Abdellatif TI - Solution to an ice melting cylindrical problem JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 1440 EP - 1452 VL - 9 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.04/ DO - 10.22436/jnsa.009.04.04 LA - en ID - JNSA_2016_9_4_a3 ER -
%0 Journal Article %A Boureghda, Abdellatif %T Solution to an ice melting cylindrical problem %J Journal of nonlinear sciences and its applications %D 2016 %P 1440-1452 %V 9 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.04/ %R 10.22436/jnsa.009.04.04 %G en %F JNSA_2016_9_4_a3
Boureghda, Abdellatif. Solution to an ice melting cylindrical problem. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1440-1452. doi : 10.22436/jnsa.009.04.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.04/
[1] A Galerkin method for Stefan problems, Appl. Math. Comput., Volume 52 (1992), pp. 239-250
[2] Numerical methods for solving one dimensional problems with a moving boundary, M. Sc. thesis, Department of Computing Science, Glasgow University, Scotland, United Kingdom, 1988
[3] Numerical solution of the oxygen diffusion in absorbing tissue with a moving boundary, Comm. Numer. Methods Engrg., Volume 22 (2006), pp. 933-942
[4] Numerical solution of the oxygen diffusion problem in cylindrically shaped sections of tissue, Internat. J. Numer. Methods Fluids, Volume 56 (2008), pp. 1945-1960
[5] Moving boundary value problems, Doctorat en Sciences Mathématiques (Ph.D thesis), between Department of Mathematics, Ferhat Abbas University, Sétif Algeria and LMIA Haute Alsace University, Mulhouse, France, 2008
[6] A modified variable time step method for solving ice melting problem, J. Difference Equ. Appl., Volume 18 (2012), pp. 1443-1455
[7] Numerical methods for one-dimensional Stefan problems, Comm. Numer. Methods Engrg., Volume 20 (2004), pp. 535-545
[8] Starting solutions for the boundary immobilization method, Comm. Numer. Methods Engrg., Volume 21 (2005), pp. 289-295
[9] Finite difference methods, in: Moving Boundary Problems in Heat Flow and Diffusion, ed. by J. R. Ockendon and R. Hodgkins, Clarendon Press, Oxford, 1974
[10] Free and moving boundary problems, Clarendon Press, Oxford, 1984
[11] A uniqueness theorem for the solution of Stefan problem, Proc. Amer. Math. Soc., Volume 8 (1957), pp. 402-408
[12] A numerical solution of the Stefan problem with a Neumann type boundary condition by enthalpy method, Appl. Math. Comput., Volume 148 (2004), pp. 321-329
[13] A note on the existence of a solution to a problem of Stefan, Quart. Appl. Math., Volume 9 (1951), pp. 185-193
[14] What are the best numerical methods in Moving Boundary Problems in Heat Flow and Diffusion, Clarendon Press, Oxford, 1975
[15] A survey of the formulation and solution of free and moving boundary Stefan problems, Brunel University Technical Report, London, 1977
[16] A comparative study of numerical methods for moving boundary, J. Inst. Math. Appl., Volume 26 (1980), pp. 411-429
[17] One-dimensional Stefan problems: an introduction, John Wiley & Sons, Inc., New York, 1987
[18] Fachbereich Mathematik, Berlin Freie Univesitat, Germany, 1977
[19] A comparison of numerical models for one-dimensional Stefan problems, J. Comput. Appl. Math., Volume 192 (2006), pp. 445-459
[20] Numerical schemes for one-dimensional Stefan-like problems with a forcing term, Appl. Math. Comput., Volume 168 (2005), pp. 1159-1168
[21] An isotherm migration formulation for one-phase Stefan problem with a time dependent Neumann condition, Appl. Math. Comput., Volume 150 (2004), pp. 59-67
[22] Numerical and machine solutions of transient heat-conduction problems involving melting or freezing, J. Heat Transfer, Volume 81 (1959), pp. 106-112
[23] Moving Boundary Problems in Heat Flow and Diffusion, Clarendon Press, Oxford, 1975
Cité par Sources :