Solution to an ice melting cylindrical problem
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1440-1452.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We give a solution to an ice melting cylindrical problem using the ''modified variable time step method'', earlier suggested by the author. New numerical techniques are proposed for the one-dimensional melting problem. The numerical results are obtained for the position of the moving boundary, time and temperatures.
DOI : 10.22436/jnsa.009.04.04
Classification : 35R35, 35R37, 80A22, 65M06, 65N06, 35K05
Keywords: Stefan problems, phase changes, moving boundary problems, partial differential equations, finite difference methods, heat equation.

Boureghda, Abdellatif 1

1 Department of Mathematics, Ferhat Abbas University, Sétif 1, Algeria
@article{JNSA_2016_9_4_a3,
     author = {Boureghda, Abdellatif},
     title = {Solution to an ice melting cylindrical problem},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1440-1452},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2016},
     doi = {10.22436/jnsa.009.04.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.04/}
}
TY  - JOUR
AU  - Boureghda, Abdellatif
TI  - Solution to an ice melting cylindrical problem
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 1440
EP  - 1452
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.04/
DO  - 10.22436/jnsa.009.04.04
LA  - en
ID  - JNSA_2016_9_4_a3
ER  - 
%0 Journal Article
%A Boureghda, Abdellatif
%T Solution to an ice melting cylindrical problem
%J Journal of nonlinear sciences and its applications
%D 2016
%P 1440-1452
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.04/
%R 10.22436/jnsa.009.04.04
%G en
%F JNSA_2016_9_4_a3
Boureghda, Abdellatif. Solution to an ice melting cylindrical problem. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1440-1452. doi : 10.22436/jnsa.009.04.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.04/

[1] Asaithambi, N. S. A Galerkin method for Stefan problems, Appl. Math. Comput., Volume 52 (1992), pp. 239-250

[2] Boureghda, A. Numerical methods for solving one dimensional problems with a moving boundary, M. Sc. thesis, Department of Computing Science, Glasgow University, Scotland, United Kingdom, 1988

[3] Boureghda, A. Numerical solution of the oxygen diffusion in absorbing tissue with a moving boundary, Comm. Numer. Methods Engrg., Volume 22 (2006), pp. 933-942

[4] Boureghda, A. Numerical solution of the oxygen diffusion problem in cylindrically shaped sections of tissue, Internat. J. Numer. Methods Fluids, Volume 56 (2008), pp. 1945-1960

[5] Boureghda, A. Moving boundary value problems, Doctorat en Sciences Mathématiques (Ph.D thesis), between Department of Mathematics, Ferhat Abbas University, Sétif Algeria and LMIA Haute Alsace University, Mulhouse, France, 2008

[6] Boureghda, A. A modified variable time step method for solving ice melting problem, J. Difference Equ. Appl., Volume 18 (2012), pp. 1443-1455

[7] Caldwell, J.; Kwan, Y. Y. Numerical methods for one-dimensional Stefan problems, Comm. Numer. Methods Engrg., Volume 20 (2004), pp. 535-545

[8] Caldwell, J.; Kwan, Y. Y. Starting solutions for the boundary immobilization method, Comm. Numer. Methods Engrg., Volume 21 (2005), pp. 289-295

[9] Crank, J. Finite difference methods, in: Moving Boundary Problems in Heat Flow and Diffusion, ed. by J. R. Ockendon and R. Hodgkins, Clarendon Press, Oxford, 1974

[10] Crank, J. Free and moving boundary problems, Clarendon Press, Oxford, 1984

[11] Douglas, J. A uniqueness theorem for the solution of Stefan problem, Proc. Amer. Math. Soc., Volume 8 (1957), pp. 402-408

[12] Esen, A.; Kutluay, S. A numerical solution of the Stefan problem with a Neumann type boundary condition by enthalpy method, Appl. Math. Comput., Volume 148 (2004), pp. 321-329

[13] Evans, G. W. A note on the existence of a solution to a problem of Stefan, Quart. Appl. Math., Volume 9 (1951), pp. 185-193

[14] Fox, L. What are the best numerical methods in Moving Boundary Problems in Heat Flow and Diffusion, Clarendon Press, Oxford, 1975

[15] R. M. Furzeland A survey of the formulation and solution of free and moving boundary Stefan problems, Brunel University Technical Report, London, 1977

[16] R. M. Furzeland A comparative study of numerical methods for moving boundary, J. Inst. Math. Appl., Volume 26 (1980), pp. 411-429

[17] Hill, J. M. One-dimensional Stefan problems: an introduction, John Wiley & Sons, Inc., New York, 1987

[18] Hoffmann, K. H. Fachbereich Mathematik, Berlin Freie Univesitat, Germany, 1977

[19] Javierre, E.; Vuik, C.; Vermolen, F. J.; Zwaag, S. Van der A comparison of numerical models for one-dimensional Stefan problems, J. Comput. Appl. Math., Volume 192 (2006), pp. 445-459

[20] S. Kutluay Numerical schemes for one-dimensional Stefan-like problems with a forcing term, Appl. Math. Comput., Volume 168 (2005), pp. 1159-1168

[21] Kutluay, S.; Esen, A. An isotherm migration formulation for one-phase Stefan problem with a time dependent Neumann condition, Appl. Math. Comput., Volume 150 (2004), pp. 59-67

[22] Murray, W. D.; Landis, F. Numerical and machine solutions of transient heat-conduction problems involving melting or freezing, J. Heat Transfer, Volume 81 (1959), pp. 106-112

[23] Ockendon, J.; Hodgkins, W. Moving Boundary Problems in Heat Flow and Diffusion, Clarendon Press, Oxford, 1975

Cité par Sources :