Construction of Tri-parametric derivative free fourth order with and without memory iterative method
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1410-1423.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We have given two general methods of converting with derivative two-step methods to without derivative two-step methods. It can also be observed that this conversion not only retain the optimal order of convergence of the two-step methods but the resulting derivative free families of iterative methods are also extendable to with memory class. The with-memory methods show greater acceleration in the order of convergence. In this way, order of convergence is accelerated from 4 to 7.53 at the most. An extensive comparison of our methods is done with the recent methods of respective domain.
DOI : 10.22436/jnsa.009.04.01
Classification : 65D05, 65H05
Keywords: With and without memory methods, derivative free, self accelerating parameters, accelerated order of convergence.

Zafar, F. 1 ; Yasmin, N. 1 ; Kutbi, M. A. 2 ; Zeshan, M. 1

1 Centre for Advanced Studies in Pure and Applied Mathematics(CASPAM), Bahauddin Zakariya University, Multan 60800, Pakistan
2 Department of Mathematics, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
@article{JNSA_2016_9_4_a0,
     author = {Zafar, F. and Yasmin, N. and Kutbi, M. A. and Zeshan, M.},
     title = {Construction of {Tri-parametric} derivative free fourth order with and without memory iterative method},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1410-1423},
     publisher = {mathdoc},
     volume = {9},
     number = {4},
     year = {2016},
     doi = {10.22436/jnsa.009.04.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.01/}
}
TY  - JOUR
AU  - Zafar, F.
AU  - Yasmin, N.
AU  - Kutbi, M. A.
AU  - Zeshan, M.
TI  - Construction of Tri-parametric derivative free fourth order with and without memory iterative method
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 1410
EP  - 1423
VL  - 9
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.01/
DO  - 10.22436/jnsa.009.04.01
LA  - en
ID  - JNSA_2016_9_4_a0
ER  - 
%0 Journal Article
%A Zafar, F.
%A Yasmin, N.
%A Kutbi, M. A.
%A Zeshan, M.
%T Construction of Tri-parametric derivative free fourth order with and without memory iterative method
%J Journal of nonlinear sciences and its applications
%D 2016
%P 1410-1423
%V 9
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.01/
%R 10.22436/jnsa.009.04.01
%G en
%F JNSA_2016_9_4_a0
Zafar, F.; Yasmin, N.; Kutbi, M. A.; Zeshan, M. Construction of Tri-parametric derivative free fourth order with and without memory iterative method. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 4, p. 1410-1423. doi : 10.22436/jnsa.009.04.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.04.01/

[1] Cordero, A.; Torregrosa, J. R. Low complexity root finding iteration functions with no derivatives of any order of convergence, J. Comput. Appl. Math., Volume 275 (2015), pp. 502-515

[2] Khan, A. R.; Kumar, V.; Hussain, N. Analytical and numerical treatment of Jungck-Type iterative schemes, Appl. Math. Comput., Volume 231 (2014), pp. 521-535

[3] R. F. King A family of fourth order methods for non-linear equations, SIAM J. Numer. Anal., Volume 10 (1973), pp. 876-879

[4] Kung, H. T.; J. F. Traub Optimal order of one point and multipoint iteration, J. Assoc. Compute. Math., Volume 21 (1974), pp. 634-651

[5] Lotfi, T.; Soleymani, F.; Ghorbanzadeh, M.; Assari, P. On the construction of some tri-parametric iterative methods with memory , Numer. Algor., Volume 2015 (2015), pp. 1-11

[6] Ortega, J. M.; Rheinboldt, W. G. Iterative Solutions of Nonlinear Equations in Several Variables, Academic Press, New York, 1970

[7] Soleymani, F.; Lotfi, T.; Tanakli, E.; F. K. Haghani Several iterative methods with memory using self accelerator, Appl. Math. Comput., Volume 254 (2015), pp. 452-458

[8] J. F. Traub Iterative Methods for the Solution of Equations, Prentice Hall, New York, USA, 1964

[9] Wang, X.; Zhang, T.; Qin, Y. Efficient two-step derivative-free iterative methods with memory and their dynamics, Int. J. Comp. Math., Volume 2015 (2015), pp. 1-24

[10] Zafar, F.; Hussain, N.; Fatimah, Z.; Kharal, A. Optimal sixteenth order convergent method based on Quasi-Hermite interpolation for computing roots, Sci. World J., Volume 2014 (2014), pp. 1-18

Cité par Sources :