Voir la notice de l'article provenant de la source International Scientific Research Publications
Li, Yanlin 1 ; Pei, Donghe 1
@article{JNSA_2016_9_3_a11, author = {Li, Yanlin and Pei, Donghe}, title = {Pedal curves of fronts in the sphere}, journal = {Journal of nonlinear sciences and its applications}, pages = {836-844}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2016}, doi = {10.22436/jnsa.009.03.12}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.12/} }
TY - JOUR AU - Li, Yanlin AU - Pei, Donghe TI - Pedal curves of fronts in the sphere JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 836 EP - 844 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.12/ DO - 10.22436/jnsa.009.03.12 LA - en ID - JNSA_2016_9_3_a11 ER -
Li, Yanlin; Pei, Donghe. Pedal curves of fronts in the sphere. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 836-844. doi : 10.22436/jnsa.009.03.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.12/
[1] The geometry of spherical curves and the algebra of quaternions, Russian Math. Surveys, Volume 50 (1995), pp. 1-68
[2] Existence and uniqueness for Legendre curves, J. Geom., Volume 104 (2013), pp. 297-307
[3] Evolutes of fronts in the Euclidean plane, J. Singul., Volume 10 (2014), pp. 92-107
[4] Normal forms for singularities of pedal curves produced by non-singular dual curve germs in \(S^n\) , Geometriae Dedicata, Volume 133 (2008), pp. 59-66
[5] Singularities of pedal curves produced by singular dual curve germs in \(S^n\), Demonstratio Math., Volume 43 (2010), pp. 447-459
[6] Legendre curves in the unit spherical bundle and evolutes (Preprint)
[7] Finite determinacy of smooth map-germs, Bull. London Math. Soc., Volume 13 (1981), pp. 481-539
Cité par Sources :