Existence and uniqueness of mild and classical solutions to fractional order Hadamard-type Cauchy problem
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 827-835.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We consider the existence and uniqueness of a mild and classical solution to impulsive nonlocal conditions fractional-order Hadamard-type Cauchy problem. The results are obtained by means of fixed point methods. Finally, we illustrate our results by an example of fractional-order Hadamard-type Cauchy problem.
DOI : 10.22436/jnsa.009.03.11
Classification : 34A08, 34N05, 34A12
Keywords: Hadamard fractional derivative, integral boundary conditions, fixed point theorems, impulsive equations.

Katatbeh, Qutaibeh 1 ; Al-Omari, Ahmad 2

1 Department of Mathematics and Statistics, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
2 Faculty of Sciences, Department of Mathematics, Al al-Bayt University, P. O. Box 130095, Mafraq 25113, Jordan
@article{JNSA_2016_9_3_a10,
     author = {Katatbeh, Qutaibeh and Al-Omari, Ahmad},
     title = {Existence and uniqueness of mild and classical solutions to  fractional order {Hadamard-type} {Cauchy} problem},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {827-835},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2016},
     doi = {10.22436/jnsa.009.03.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.11/}
}
TY  - JOUR
AU  - Katatbeh, Qutaibeh
AU  - Al-Omari, Ahmad
TI  - Existence and uniqueness of mild and classical solutions to  fractional order Hadamard-type Cauchy problem
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 827
EP  - 835
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.11/
DO  - 10.22436/jnsa.009.03.11
LA  - en
ID  - JNSA_2016_9_3_a10
ER  - 
%0 Journal Article
%A Katatbeh, Qutaibeh
%A Al-Omari, Ahmad
%T Existence and uniqueness of mild and classical solutions to  fractional order Hadamard-type Cauchy problem
%J Journal of nonlinear sciences and its applications
%D 2016
%P 827-835
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.11/
%R 10.22436/jnsa.009.03.11
%G en
%F JNSA_2016_9_3_a10
Katatbeh, Qutaibeh; Al-Omari, Ahmad. Existence and uniqueness of mild and classical solutions to  fractional order Hadamard-type Cauchy problem. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 827-835. doi : 10.22436/jnsa.009.03.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.11/

[1] Ahmad, B.; Ntouyas, S. K. On Hadamard fractional integro-differential boundary value problems, J. Appl. Math. Comput., Volume 47 (2015), pp. 119-131

[2] Ahmad, B.; Ntouyas, S. K.; Alsaedi, A. New results for boundary value problems of Hadamard-type fractional differential inclusions and integral boundary conditions, Bound. Value Probl., Volume 2013 (2013), pp. 1-14

[3] Anguraja, A.; Maheswari, M. L. Existence of solutions for fractional impulsive neutral functional infinite delay integrodifferential equations with nonlocal conditions, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 271-280

[4] Butzer, P. L.; Kilbas, A. A.; Trujillo, J. J. Compositions of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., Volume 269 (2002), pp. 387-400

[5] Butzer, P. L.; Kilbas, A. A.; Trujillo, J. J. Fractional calculus in the Mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl., Volume 269 (2002), pp. 1-27

[6] Butzer, P. L.; Kilbas, A. A.; Trujillo, J. J. Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., Volume 270 (2002), pp. 1-15

[7] J. Hadamard Essai sur l'étude des fonctions donnés par leur développement de Taylor, J. Math. Pures Appl., Volume 8 (1892), pp. 101-186

[8] A. A. Kilbas Hadamard-type fractional calculus, J. Korean Math. Soc., Volume 38 (2001), pp. 1191-1204

[9] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006

[10] Kilbas, A. A.; Trujillo, J. J. Hadamard-type integrals as G-transforms, Integral Transforms Spec. Funct., Volume 14 (2003), pp. 413-427

[11] Lin, S.-Y. Generalized Gronwall inequalities and their applications to fractional differential equations, J. Inequal. Appl., Volume 2013 (2013), pp. 1-9

[12] Nanwarea, J. A.; Dhaigude, D. B. Existence and uniqueness of solutions of differential equations of fractional order with integral boundary conditions, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 246-254

[13] Qiu, T.; Bai, Z. Positive solutions for boundary of nonlinear fractional differential equation, J. Nonlinear Sci. Appl., Volume 1 (2008), pp. 123-131

Cité par Sources :