Conjugacy between trapezoid maps
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 819-826.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Trapezoid maps are a kind of continuous and piecewise linear maps with a at top. By the conjugacy relationship, we present a complete classification for four families of trapezoid maps. Firstly, using an extension method, we construct all homeomorphic solutions of conjugacy equation $\varphi \circ f = g \circ \varphi$ for some non-monotone continuous maps f and g. Secondly, using an iterative construction method and an extension method, we construct respectively all topological conjugacies for four families of trapezoid maps. Finally, all construction algorithms are implemented in MATLAB, and three examples are illustrated to construct topological conjugacies and a topological semi-conjugacy.
DOI : 10.22436/jnsa.009.03.10
Classification : 37E05, 37C15
Keywords: Trapezoid map, topological conjugacy, topological classification, conjugacy equation.

Shi, Yong-Guo 1

1 Key Laboratory of Numerical Simulation of Sichuan Province, College of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan 641112, P. R. China
@article{JNSA_2016_9_3_a9,
     author = {Shi, Yong-Guo},
     title = {Conjugacy between trapezoid maps},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {819-826},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2016},
     doi = {10.22436/jnsa.009.03.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.10/}
}
TY  - JOUR
AU  - Shi, Yong-Guo
TI  - Conjugacy between trapezoid maps
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 819
EP  - 826
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.10/
DO  - 10.22436/jnsa.009.03.10
LA  - en
ID  - JNSA_2016_9_3_a9
ER  - 
%0 Journal Article
%A Shi, Yong-Guo
%T Conjugacy between trapezoid maps
%J Journal of nonlinear sciences and its applications
%D 2016
%P 819-826
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.10/
%R 10.22436/jnsa.009.03.10
%G en
%F JNSA_2016_9_3_a9
Shi, Yong-Guo. Conjugacy between trapezoid maps. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 819-826. doi : 10.22436/jnsa.009.03.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.10/

[1] Banks, J.; Dragan, V.; A. Jones Chaos: a mathematical introduction, Cambridge University Press, Cambridge, 2003

[2] Block, L.; E. M. Coven Topological conjugacy and transitivity for a class of piecewise monotone maps of the interval, Trans. Amer. Math. Soc., Volume 300 (1987), pp. 297-306

[3] Brucks, K. M.; Misiurewicz, M.; Tresser, C. Monotonicity properties of the family of trapezoidal maps, Comm. Math. Phys., Volume 137 (1991), pp. 1-12

[4] P. R. Halmos Lectures on Ergodic Theory , Chelsea Publishing Co., New York, 1960

[5] S. J. Kolodzieski Delta-pseudo orbit shadowing in a family of trapezoidal maps, Ph.D. Thesis, Stevens Institute of Technology, ProQuest LLC, Ann Arbor, MI, 1991

[6] Louck, J. D.; Metropolis, N. Symbolic dynamics of trapezoidal maps , D. Reidel Publishing Co., Dordrecht, 1986

[7] Segawa, H.; H. Ishitani On the existence of a conjugacy between weakly multimodal maps, Tokyo J. Math. , Volume 21 (1998), pp. 511-521

[8] Schweizer, B.; Sklar, A. Continuous functions that conjugate trapezoid functions, Aequationes Math., Volume 28 (1985), pp. 300-304

[9] Zhang, G. Conjugacy and iterative roots of a class of piecewise expanding self-maps (I), (in Chinese), Chin. Ann. Math., Volume 13 (1992), pp. 33-40

Cité par Sources :