Voir la notice de l'article provenant de la source International Scientific Research Publications
Tian, Jing-Feng 1 ; Hu, Xi-Mei 2 ; Zhao, Hong-Shan 3
@article{JNSA_2016_9_3_a8, author = {Tian, Jing-Feng and Hu, Xi-Mei and Zhao, Hong-Shan}, title = {Common tripled fixed point theorem for {W-compatible} mappings in fuzzy metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {806-818}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2016}, doi = {10.22436/jnsa.009.03.09}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.09/} }
TY - JOUR AU - Tian, Jing-Feng AU - Hu, Xi-Mei AU - Zhao, Hong-Shan TI - Common tripled fixed point theorem for W-compatible mappings in fuzzy metric spaces JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 806 EP - 818 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.09/ DO - 10.22436/jnsa.009.03.09 LA - en ID - JNSA_2016_9_3_a8 ER -
%0 Journal Article %A Tian, Jing-Feng %A Hu, Xi-Mei %A Zhao, Hong-Shan %T Common tripled fixed point theorem for W-compatible mappings in fuzzy metric spaces %J Journal of nonlinear sciences and its applications %D 2016 %P 806-818 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.09/ %R 10.22436/jnsa.009.03.09 %G en %F JNSA_2016_9_3_a8
Tian, Jing-Feng; Hu, Xi-Mei; Zhao, Hong-Shan. Common tripled fixed point theorem for W-compatible mappings in fuzzy metric spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 806-818. doi : 10.22436/jnsa.009.03.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.09/
[1] Tripled fixed point of W-compatible mappings in abstract metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-20
[2] Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal., Volume 74 (2011), pp. 4889-4897
[3] Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Appl. Math. Comput., Volume 218 (2012), pp. 5929-5936
[4] Common fixed point theorems of compatible and weakly compatible maps in Menger spaces, Nonlinear Anal., Volume 71 (2009), pp. 1833-1843
[5] On some result in fuzzy metric space, Fuzzy Sets and Systems, Volume 64 (1994), pp. 395-399
[6] Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 27 (1988), pp. 385-389
[7] Fixed Point Theory in Probabilistic Metric Space, Kluwer Academic Publishers, Dordrecht, 2001
[8] Fuzzy metrics and statistical metric spaces, Kybernetika, Volume 11 (1975), pp. 336-344
[9] Fixed point theorems in fuzzy metric spaces using property E.A., Nonlinear Anal., Volume 73 (2010), pp. 2184-2188
[10] A note on tripled coincidence and tripled common fixed point theorems in partially ordered metric spaces, Appl. Math. Comput., Volume 236 (2014), pp. 367-372
[11] The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems, Volume 147 (2004), pp. 273-283
[12] Tripled fixed point theorem in fuzzy metric spaces and applications, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-13
[13] Coupled fixed point, f-invariant set and fixed point of N-order, Ann. Funct. Anal., Volume 1 (2010), pp. 46-56
[14] Probabilistic Metric Spaces, North-Holland Publishing Co., New York, 1983
[15] Coupled fixed point theorems for contractions in fuzzy metric spaces, Nonlinear Anal., Volume 72 (2010), pp. 1298-1304
[16] Note on ''Coupled fixed point theorems for contractions in fuzzy metric spaces'', Nonlinear Anal., Volume 74 (2011), pp. 5475-5479
Cité par Sources :