Common tripled fixed point theorem for W-compatible mappings in fuzzy metric spaces
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 806-818.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we present a common tripled fixed point theorem for W-compatible mappings under $\phi$- contractive conditions in fuzzy metric spaces. The result generalizes, extends and improves several classical and very recent related results in literature. For instance, we obtain an extension of Theorem 2.5 in [S. Sedghi, I. Altun, N. Shobe, Nonlinear Anal., 72 (2010), 1298-1304], an refinement of Theorem 4.1 in [X. Zhu, J. Xiao, Nonlinear Anal., 74 (2011), 5475-5479] and an improvement of Theorem 11 in [A. Roldán, J. Martínez-Moreno, C. Roldán, Fixed Point Theory Appl., 2013 (2013), 13 pages]. Finally, an example is given to illustrate the usability of our main result.
DOI : 10.22436/jnsa.009.03.09
Classification : 47H10
Keywords: Common tripled fixed point, tripled fixed point, fuzzy metric space, Hadžić type t-norm.

Tian, Jing-Feng 1 ; Hu, Xi-Mei 2 ; Zhao, Hong-Shan 3

1 College of Science and Technology, North China Electric Power University, Baoding, Hebei Province, 071051, P. R. China
2 China Mobile Group Hebei Co., Ltd., Baoding, Hebei Province, 071000, P. R. China
3 School of Electrical and Electronic Engineering, North China Electric Power University, Baoding, Hebei Province, 071003, P. R. China
@article{JNSA_2016_9_3_a8,
     author = {Tian, Jing-Feng and Hu, Xi-Mei and Zhao, Hong-Shan},
     title = {Common tripled fixed point theorem for {W-compatible} mappings in fuzzy metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {806-818},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2016},
     doi = {10.22436/jnsa.009.03.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.09/}
}
TY  - JOUR
AU  - Tian, Jing-Feng
AU  - Hu, Xi-Mei
AU  - Zhao, Hong-Shan
TI  - Common tripled fixed point theorem for W-compatible mappings in fuzzy metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 806
EP  - 818
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.09/
DO  - 10.22436/jnsa.009.03.09
LA  - en
ID  - JNSA_2016_9_3_a8
ER  - 
%0 Journal Article
%A Tian, Jing-Feng
%A Hu, Xi-Mei
%A Zhao, Hong-Shan
%T Common tripled fixed point theorem for W-compatible mappings in fuzzy metric spaces
%J Journal of nonlinear sciences and its applications
%D 2016
%P 806-818
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.09/
%R 10.22436/jnsa.009.03.09
%G en
%F JNSA_2016_9_3_a8
Tian, Jing-Feng; Hu, Xi-Mei; Zhao, Hong-Shan. Common tripled fixed point theorem for W-compatible mappings in fuzzy metric spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 806-818. doi : 10.22436/jnsa.009.03.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.09/

[1] Aydi, H.; Abbas, M.; Sintunavarat, W.; Kumam, P. Tripled fixed point of W-compatible mappings in abstract metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-20

[2] Berinde, V.; Borcut, M. Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal., Volume 74 (2011), pp. 4889-4897

[3] Borcut, M.; V. Berinde Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Appl. Math. Comput., Volume 218 (2012), pp. 5929-5936

[4] Fang, J. X. Common fixed point theorems of compatible and weakly compatible maps in Menger spaces, Nonlinear Anal., Volume 71 (2009), pp. 1833-1843

[5] George, A.; Veeramani, P. On some result in fuzzy metric space, Fuzzy Sets and Systems, Volume 64 (1994), pp. 395-399

[6] Grabiec, M. Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 27 (1988), pp. 385-389

[7] Hadžić, O.; Pap, E. Fixed Point Theory in Probabilistic Metric Space, Kluwer Academic Publishers, Dordrecht, 2001

[8] Kramosil, I.; Michalek, J. Fuzzy metrics and statistical metric spaces, Kybernetika, Volume 11 (1975), pp. 336-344

[9] D. Miheţ Fixed point theorems in fuzzy metric spaces using property E.A., Nonlinear Anal., Volume 73 (2010), pp. 2184-2188

[10] Radenović, S. A note on tripled coincidence and tripled common fixed point theorems in partially ordered metric spaces, Appl. Math. Comput., Volume 236 (2014), pp. 367-372

[11] López, J. Rodríguez; Romaguera, S. The Hausdorff fuzzy metric on compact sets, Fuzzy Sets and Systems, Volume 147 (2004), pp. 273-283

[12] Roldán, A.; Martínez-Moreno, J.; C. Roldán Tripled fixed point theorem in fuzzy metric spaces and applications, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-13

[13] Samet, B.; Vetro, C. Coupled fixed point, f-invariant set and fixed point of N-order, Ann. Funct. Anal., Volume 1 (2010), pp. 46-56

[14] Schweizer, B.; Sklar, A. Probabilistic Metric Spaces, North-Holland Publishing Co., New York, 1983

[15] Sedghi, S.; Altun, I.; N. Shobe Coupled fixed point theorems for contractions in fuzzy metric spaces, Nonlinear Anal., Volume 72 (2010), pp. 1298-1304

[16] Zhu, X.; Xiao, J. Note on ''Coupled fixed point theorems for contractions in fuzzy metric spaces'', Nonlinear Anal., Volume 74 (2011), pp. 5475-5479

Cité par Sources :