Some topological properties of fuzzy cone metric spaces
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 799-805.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We prove Baire's theorem for fuzzy cone metric spaces in the sense of Öner et al. [T. Öner, M. B. Kandemir, B. Tanay, J. Nonlinear Sci. Appl., 8 (2015), 610-616]. A necessary and sufficient condition for a fuzzy cone metric space to be precompact is given. We also show that every separable fuzzy cone metric space is second countable and that a subspace of a separable fuzzy cone metric space is separable.
DOI : 10.22436/jnsa.009.03.08
Classification : 54A40, 54E35, 54E15, 54H25
Keywords: Fuzzy cone metric space, Baire's theorem, separable, second countable.

Öner, Tarkan 1

1 Department of Mathematics, Faculty of Sciences, Muğla Sıtkı Koçman University, 48000 Mugla, Turkey
@article{JNSA_2016_9_3_a7,
     author = {\"Oner, Tarkan},
     title = {Some topological properties of fuzzy cone metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {799-805},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2016},
     doi = {10.22436/jnsa.009.03.08},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.08/}
}
TY  - JOUR
AU  - Öner, Tarkan
TI  - Some topological properties of fuzzy cone metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 799
EP  - 805
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.08/
DO  - 10.22436/jnsa.009.03.08
LA  - en
ID  - JNSA_2016_9_3_a7
ER  - 
%0 Journal Article
%A Öner, Tarkan
%T Some topological properties of fuzzy cone metric spaces
%J Journal of nonlinear sciences and its applications
%D 2016
%P 799-805
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.08/
%R 10.22436/jnsa.009.03.08
%G en
%F JNSA_2016_9_3_a7
Öner, Tarkan. Some topological properties of fuzzy cone metric spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 799-805. doi : 10.22436/jnsa.009.03.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.08/

[1] Bag, T. Fuzzy cone metric spaces and fixed point theorems of contractive mappings, Ann. Fuzzy Math. Inform., Volume 6 (2013), pp. 657-668

[2] Deng, Z. Fuzzy pseudo-metric spaces, J. Math. Anal. Appl., Volume 86 (1982), pp. 74-95

[3] Erceg, M. A. Metric spaces in fuzzy set theory , J. Math. Anal. Appl., Volume 69 (1979), pp. 205-230

[4] George, A.; Veeramani, P. On some results in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 64 (1994), pp. 395-399

[5] George, A.; P. Veeramani On some results of analysis for fuzzy metric spaces, Fuzzy Sets and Systems, Volume 90 (1997), pp. 365-368

[6] Gregori, V.; Romaguera, S. Some properties of fuzzy metric spaces, Fuzzy Sets and Systems, Volume 115 (2000), pp. 485-489

[7] Huang, L. G.; Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Volume 332 (2007), pp. 1468-1476

[8] Kaleva, O.; Seikkala, S. On fuzzy metric spaces, Fuzzy Sets and Systems, Volume 12 (1984), pp. 215-229

[9] Kramosil, O.; Michalek, J. Fuzzy metric and statistical metric spaces, Kybernetika, Volume 11 (1975), pp. 336-344

[10] Öner, T.; Kandemir, M. B.; B. Tanay Fuzzy cone metric spaces, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 610-616

[11] Rezapour, S.; R. Hamlbarani Some notes on the paper: ''Cone metric spaces and fixed point theorems of contractive mappings'', J. Math. Anal. Appl., Volume 332 (2007), pp. 1468-1476

[12] Schweizer, B.; Sklar, A. Statistical metric spaces , Pacific J. Math., Volume 10 (1960), pp. 313-334

[13] L. A. Zadeh Fuzzy sets, Information and Control, Volume 8 (1965), pp. 338-353

Cité par Sources :