Heisenberg type uncertainty principle for continuous shearlet transform
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 778-786.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We prove a Heisenberg type uncertainty principle for the continuous shearlet transform, and study two generalizations of it. Our work extends the shearlet theory.
DOI : 10.22436/jnsa.009.03.06
Classification : 42C40, 42C15
Keywords: Uncertainty principle, continuous shearlet transform, shearlet.

Su, Yu 1

1 School of Mathematical Sciences, Xing Jiang Normal University, Urumuqi 830054, China
@article{JNSA_2016_9_3_a5,
     author = {Su, Yu},
     title = {Heisenberg type uncertainty principle for continuous shearlet transform},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {778-786},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2016},
     doi = {10.22436/jnsa.009.03.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.06/}
}
TY  - JOUR
AU  - Su, Yu
TI  - Heisenberg type uncertainty principle for continuous shearlet transform
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 778
EP  - 786
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.06/
DO  - 10.22436/jnsa.009.03.06
LA  - en
ID  - JNSA_2016_9_3_a5
ER  - 
%0 Journal Article
%A Su, Yu
%T Heisenberg type uncertainty principle for continuous shearlet transform
%J Journal of nonlinear sciences and its applications
%D 2016
%P 778-786
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.06/
%R 10.22436/jnsa.009.03.06
%G en
%F JNSA_2016_9_3_a5
Su, Yu. Heisenberg type uncertainty principle for continuous shearlet transform. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 778-786. doi : 10.22436/jnsa.009.03.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.06/

[1] Bodmann, B. G.; Kutyniok, G.; X. Zhuang Gabor shearlets, Appl. Comput. Harmon. Anal., Volume 38 (2015), pp. 87-114

[2] Cowling, M. G.; Price, J. F. Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality, SIAM J. Math. Anal., Volume 15 (1984), pp. 151-165

[3] Dahlke, S.; Kutyniok, G.; Maass, P.; Sagiv, C.; Stark, H. G.; Teschke, G. The uncertainty principle associated with the continuous shearlet transform, Int. J. Wavelets Multiresolut. Inf. Process., Volume 6 (2008), pp. 157-181

[4] Dahlke, S.; Maass, P. The affine uncertainty principle in one and two dimensions, Comput. Math. Appl., Volume 30 (1995), pp. 293-305

[5] Donoho, D.; Strak, P. B. Uncertainty principles and signal recovery, SIAM J. Appl. Math., Volume 49 (1989), pp. 906-931

[6] Folland, G. B.; Sitaram, A. The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl., Volume 3 (1997), pp. 207-238

[7] Gröchenig, K. Uncertainty principles for time-frequency representations, Numer. Harmon. Anal., Birkhäuser Boston (2003), pp. 11-30

[8] Guo, K.; Kutyniok, G.; D. Labate Sparse multidimensional representations using anisotropic dilation and shear operators , in: G. Chen, M.-J. Lai (eds.), Wavelets and splines: Athens 2005, Nashboro Press, Brentwood (2006), pp. 189-201

[9] Havin, V.; Jöricke, B. The uncertainty principle in harmonic analysis, Springer-Verlag, Berlin, Heidelberg, 1995

[10] Kumara, D.; Kumarb, S.; Singhd, B. Cone-adapted continuous shearlet transform and reconstruction formula, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 262-269

[11] Labate, D.; Lim, W. Q.; Kutyniok, G.; Weiss, G. Sparse multidimensional representation using shearlets, in: M. Papadakis, A.F. Laine, M.A. Unser (eds.), Wavelets XI. Proc. SPIE, Volume 5914 (2005), pp. 254-262

[12] E. Wilczok New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform, Doc. Math. J. DMV, Volume 5 (2000), pp. 201-226

Cité par Sources :