Voir la notice de l'article provenant de la source International Scientific Research Publications
Su, Yu 1
@article{JNSA_2016_9_3_a5, author = {Su, Yu}, title = {Heisenberg type uncertainty principle for continuous shearlet transform}, journal = {Journal of nonlinear sciences and its applications}, pages = {778-786}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2016}, doi = {10.22436/jnsa.009.03.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.06/} }
TY - JOUR AU - Su, Yu TI - Heisenberg type uncertainty principle for continuous shearlet transform JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 778 EP - 786 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.06/ DO - 10.22436/jnsa.009.03.06 LA - en ID - JNSA_2016_9_3_a5 ER -
%0 Journal Article %A Su, Yu %T Heisenberg type uncertainty principle for continuous shearlet transform %J Journal of nonlinear sciences and its applications %D 2016 %P 778-786 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.06/ %R 10.22436/jnsa.009.03.06 %G en %F JNSA_2016_9_3_a5
Su, Yu. Heisenberg type uncertainty principle for continuous shearlet transform. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 778-786. doi : 10.22436/jnsa.009.03.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.06/
[1] Gabor shearlets, Appl. Comput. Harmon. Anal., Volume 38 (2015), pp. 87-114
[2] Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality, SIAM J. Math. Anal., Volume 15 (1984), pp. 151-165
[3] The uncertainty principle associated with the continuous shearlet transform, Int. J. Wavelets Multiresolut. Inf. Process., Volume 6 (2008), pp. 157-181
[4] The affine uncertainty principle in one and two dimensions, Comput. Math. Appl., Volume 30 (1995), pp. 293-305
[5] Uncertainty principles and signal recovery, SIAM J. Appl. Math., Volume 49 (1989), pp. 906-931
[6] The uncertainty principle: a mathematical survey, J. Fourier Anal. Appl., Volume 3 (1997), pp. 207-238
[7] Uncertainty principles for time-frequency representations, Numer. Harmon. Anal., Birkhäuser Boston (2003), pp. 11-30
[8] Sparse multidimensional representations using anisotropic dilation and shear operators , in: G. Chen, M.-J. Lai (eds.), Wavelets and splines: Athens 2005, Nashboro Press, Brentwood (2006), pp. 189-201
[9] The uncertainty principle in harmonic analysis, Springer-Verlag, Berlin, Heidelberg, 1995
[10] Cone-adapted continuous shearlet transform and reconstruction formula, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 262-269
[11] Sparse multidimensional representation using shearlets, in: M. Papadakis, A.F. Laine, M.A. Unser (eds.), Wavelets XI. Proc. SPIE, Volume 5914 (2005), pp. 254-262
[12] New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform, Doc. Math. J. DMV, Volume 5 (2000), pp. 201-226
Cité par Sources :