Voir la notice de l'article provenant de la source International Scientific Research Publications
Liu, Wenjun 1 ; Wen, Wangshu 1 ; Park, Jaekeun 2
@article{JNSA_2016_9_3_a4, author = {Liu, Wenjun and Wen, Wangshu and Park, Jaekeun}, title = {Hermite-Hadamard type inequalities for {MT-convex} functions via classical integrals and fractional integrals}, journal = {Journal of nonlinear sciences and its applications}, pages = {766-777}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2016}, doi = {10.22436/jnsa.009.03.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.05/} }
TY - JOUR AU - Liu, Wenjun AU - Wen, Wangshu AU - Park, Jaekeun TI - Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 766 EP - 777 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.05/ DO - 10.22436/jnsa.009.03.05 LA - en ID - JNSA_2016_9_3_a4 ER -
%0 Journal Article %A Liu, Wenjun %A Wen, Wangshu %A Park, Jaekeun %T Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals %J Journal of nonlinear sciences and its applications %D 2016 %P 766-777 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.05/ %R 10.22436/jnsa.009.03.05 %G en %F JNSA_2016_9_3_a4
Liu, Wenjun; Wen, Wangshu; Park, Jaekeun. Hermite-Hadamard type inequalities for MT-convex functions via classical integrals and fractional integrals. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 766-777. doi : 10.22436/jnsa.009.03.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.05/
[1] Inequalities of Hermite-Hadamard's type for functions whose derivatives absolute values are quasi-convex, RGMIA Res. Rep. Coll., Volume 12 (2009), pp. 1-11
[2] New generalisations of Gruss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., Volume 2 (2010), pp. 93-99
[3] On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math., Volume 33 (2002), pp. 55-65
[4] Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula , Appl. Math. Lett., Volume 11 (1998), pp. 91-95
[5] Quasi-convex functions and Hadamard's inequality, Bull. Austral. Math. Soc., Volume 57 (1998), pp. 377-385
[6] Fractional calculus: integral and differential equations of fractional order, in Fractals and fractional calculus in continuum mechanics, Springer, Vienna, 1997
[7] Some generalizations of the Fejér and Hermite-Hadamard inequalities in Hölder spaces, J. Appl. Math. Inform., Volume 29 (2011), pp. 859-868
[8] Some estimates on the Hermite-Hadamard inequality through quasi-convex functions , An. Univ. Craiova Ser. Mat. Inform., Volume 34 (2007), pp. 83-88
[9] New inequalities of Hermite-Hadamard type for convex functions with applications , J. Inequal. Appl., Volume 2011 (2011), pp. 1-11
[10] New integral inequalities via (\(\alpha,m\))-convexity and quasi-convexity, Hacet. J. Math. Stat., Volume 42 (2013), pp. 289-297
[11] Some Ostrowski type inequalities via Riemann-Liouville fractional integrals for h-convex functions, J. Comput. Anal. Appl., Volume 16 (2014), pp. 998-1004
[12] Some Simpson type inequalities for h-convex and (\(\alpha,m\))-convex functions, J. Comput. Anal. Appl., Volume 16 (2014), pp. 1005-1102
[13] Ostrowski type fractional integral inequalities for MT-convex functions, Miskolc Mathematical Notes, Volume 16 (2015), pp. 249-256
[14] Approximating the finite Hilbert transform via a companion of Ostrowski's inequality for function of bounded variation and applications, Appl. Math. Comput., Volume 247 (2014), pp. 373-385
[15] On new Ostrowski type inequalities for double integrals on time scales, Dynam. Systems Appl., Volume 19 (2010), pp. 189-198
[16] Some generalizations of different type of integral inequalities for MT-convex functions, FILOMAT ( In press)
[17] A refinement of the difference between two integral means in terms of the cumulative variation and applications , J. Math. Inequal., Volume 10 (2016)
[18] An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, Inc., New York, 1993
[19] Hermite-Hadamard type inequalities for s-convex and s-concave functions via fractional integrals, arXiv, Volume 2012 (2012), pp. 1-9
[20] Integral inequalities via several kinds of convexity, Creat. Math. Inform., Volume 20 (2011), pp. 62-73
[21] Fractional differential equations, Academic Press, Inc., San Diego, CA, 1999
[22] Some integral inequalities of Simpson type for GA-\(\varepsilon\)-convex functions, Georgian Math. J., Volume 20 (2013), pp. 775-788
[23] On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals, Integral Transforms Spec. Funct., Volume 25 (2014), pp. 134-147
[24] On some Hadamard-type inequalities for h-convex functions, J. Math. Inequal., Volume 2 (2008), pp. 335-341
[25] On some new inequalities of Hadamard type involving h-convex functions, Acta Math. Univ. Comenian. (N.S.), Volume 79 (2010), pp. 265-272
[26] Hermite-Hadamards inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, Volume 57 (2013), pp. 2403-2407
[27] On some integral inequalities via h-convexity , Miskolc Math. Notes, Volume 14 (2013), pp. 1041-1057
[28] Ostrowski type inequalities for functions whose derivatives are MT-convex, J. Comput. Anal. Appl., Volume 17 (2014), pp. 691-696
[29] On some Hadamard type inequalities for MT-convex functions, Int. J. Open Probl. Comput. Sci. Math., Volume 6 (2013), pp. 102-113
[30] On MT-convexity, arXiv, Volume 2012 (2012), pp. 1-6
Cité par Sources :