Monotone hybrid methods for a common solution problem in Hilbert spaces
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 757-765.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this article is to investigate generalized mixed equilibrium problems and uniformly L-Lipschitz continuous asymptotically $\kappa$-strict pseudocontractions in the intermediate sense based on a monotone hybrid method. Strong convergence theorems of common solutions are established in the framework of Hilbert spaces.
DOI : 10.22436/jnsa.009.03.04
Classification : 47H10, 90C33
Keywords: Asymptotically strict pseudocontraction, asymptotically nonexpansive mapping, generalized mixed equilibrium problem, solution, fixed point.

Li, Dongfeng 1 ; Zhao, Juan 2

1 School of Information Engineering, North China University of Water Resources and Electric Power, Zhengzhou, China
2 School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power University, Zhengzhou 450011, China
@article{JNSA_2016_9_3_a3,
     author = {Li, Dongfeng and Zhao, Juan},
     title = {Monotone hybrid methods for a common solution problem in {Hilbert} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {757-765},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2016},
     doi = {10.22436/jnsa.009.03.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.04/}
}
TY  - JOUR
AU  - Li, Dongfeng
AU  - Zhao, Juan
TI  - Monotone hybrid methods for a common solution problem in Hilbert spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 757
EP  - 765
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.04/
DO  - 10.22436/jnsa.009.03.04
LA  - en
ID  - JNSA_2016_9_3_a3
ER  - 
%0 Journal Article
%A Li, Dongfeng
%A Zhao, Juan
%T Monotone hybrid methods for a common solution problem in Hilbert spaces
%J Journal of nonlinear sciences and its applications
%D 2016
%P 757-765
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.04/
%R 10.22436/jnsa.009.03.04
%G en
%F JNSA_2016_9_3_a3
Li, Dongfeng; Zhao, Juan. Monotone hybrid methods for a common solution problem in Hilbert spaces. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 757-765. doi : 10.22436/jnsa.009.03.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.04/

[1] Dehaish, B. A. Bin A regularization projection algorithm for various problems with nonlinear mappings in Hilbert spaces, J. Inequal. Appl., Volume 2015 (2015), pp. 1-14

[2] B. A. Bin Dehaish Weak and strong convergence of algorithms for the sum of two accretive operators with applications , J. Nonlinear Convex Anal., Volume 16 (2015), pp. 1321-1336

[3] Blum, E.; W. Oettli From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145

[4] Browder, F. E.; Petryshyn, W. V. Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., Volume 20 (1967), pp. 197-228

[5] Bruck, R. E.; Kuczumow, T.; Reich, S. Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Colloq. Math., Volume 65 (1993), pp. 169-179

[6] Cho, S. Y.; X. Qin On the strong convergence of an iterative process for asymptotically strict pseudocontractions and equilibrium problems, Appl. Math. Comput., Volume 235 (2014), pp. 430-438

[7] Cho, S. Y.; Qin, X.; Wang, L. Strong convergence of a splitting algorithm for treating monotone operators, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-15

[8] Choudhury, B. S.; Kundu, S. A viscosity type iteration by weak contraction for approximating solutions of generalized equilibrium problem, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 243-251

[9] Fan, K. A minimax inequality and its application, Shisha (Ed.), Academic Press, New York (1972), pp. 103-113

[10] Goebel, K.; W. A. Kirk A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 35 (1972), pp. 171-174

[11] He, R. H. Coincidence theorem and existence theorems of solutions for a system of \(K_y\) Fan type minimax inequalities in FC-spaces, Adv. Fixed Point Theory, Volume 2 (2012), pp. 47-57

[12] Kim, J. K. Strong convergence theorems by hybrid projection methods for equilibrium problems and fixed point problems of the asymptotically quasi-\(\phi\)-nonexpansive mappings, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-15

[13] Kim, J. K.; Cho, S. Y.; X. Qin Some results on generalized equilibrium problems involing strictly pseudocontractive mappings, Acta Math. Sci., Volume 31 (2011), pp. 2041-2057

[14] Kirk, W. A. Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math., Volume 17 (1974), pp. 339-346

[15] Liu, M.; Chang, S. S. An iterative method for equilibrium problems and quasi-variational inclusion problems, Nonlinear Funct. Anal. Appl., Volume 14 (2009), pp. 619-638

[16] Park, S. A review of the KKM theory on \(\phi_A\)-space or GFC-spaces, Adv. Fixed Point Theory, Volume 3 (2013), pp. 355-382

[17] Qihou, L. Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings, Nonlinear Anal., Volume 26 (1996), pp. 1835-1842

[18] Qin, X.; Cho, S. Y.; J. K. Kim Convergence theorems on asymptotically pseudocontractive mappings in the intermediate sense, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-14

[19] Qin, X.; Cho, S. Y.; Kang, S. M. An extragradient-type method for generalized equilibrium problems involving strictly pseudocontractive mappings , J. Glob. Optim., Volume 49 (2011), pp. 679-693

[20] Qin, X.; Cho, S. Y.; L.Wang A regularization method for treating zero points of the sum of two monotone operators, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-10

[21] Sahu, D. R.; Xu, H. K.; Yao, J. C. Asymptotically strict pseudocontractive mappings in the intermediate sense , Nonlinear Anal., Volume 70 (2009), pp. 3502-3511

[22] Shen, J.; Pang, L. P. An approximate bundle method for solving variational inequalities, Commun. Optim. Theory, Volume 1 (2012), pp. 1-18

[23] Su, T. V. Second-order optimality conditions for vector equilibrium problems, J. Nonlinear Funct. Anal., Volume 2015 (2015), pp. 1-31

[24] Wu, C. Wiener-Hope equations methods for generalized variational inequalities, J. Nonlinear Funct. Anal., Volume 2013 (2013), pp. 1-10

[25] Yuan, Q.; Y. Zhang Convergence of a regularization algorithm for nonexpansive and monotone operators in Hilbert spaces , Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-17

[26] M. Zhang An algorithm for treating asymptotically strict pseudocontractions and monotone operators , Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-14

[27] Zhang, L.; H. Tong An iterative method for nonexpansive semigroups, variational inclusions and generalized equilibrium problems , Adv. Fixed Point Theory, Volume 4 (2014), pp. 325-343

[28] Zhao, J. Strong convergence theorems for equilibrium problems, fixed point problems of asymptotically nonexpan- sive mappings and a general system of variational inequalities, Nonlinear Funct. Anal. Appl., Volume 16 (2011), pp. 447-464

[29] Zhao, L. C.; Chang, S. S. Strong convergence theorems for equilibrium problems and fixed point problems of strict pseudo-contraction mappings, J. Nonlinear Sci. Appl., Volume 2 (2009), pp. 78-91

Cité par Sources :