Voir la notice de l'article provenant de la source International Scientific Research Publications
Boulaaras, Salah 1
@article{JNSA_2016_9_3_a2, author = {Boulaaras, Salah}, title = {Asymptotic behavior and a posteriori error estimates in {Sobolev} space for the generalized overlapping domain decomposition method for evolutionary {HJB} equation with nonlinear source terms. {Part} 1}, journal = {Journal of nonlinear sciences and its applications}, pages = {736-756}, publisher = {mathdoc}, volume = {9}, number = {3}, year = {2016}, doi = {10.22436/jnsa.009.03.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.03/} }
TY - JOUR AU - Boulaaras, Salah TI - Asymptotic behavior and a posteriori error estimates in Sobolev space for the generalized overlapping domain decomposition method for evolutionary HJB equation with nonlinear source terms. Part 1 JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 736 EP - 756 VL - 9 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.03/ DO - 10.22436/jnsa.009.03.03 LA - en ID - JNSA_2016_9_3_a2 ER -
%0 Journal Article %A Boulaaras, Salah %T Asymptotic behavior and a posteriori error estimates in Sobolev space for the generalized overlapping domain decomposition method for evolutionary HJB equation with nonlinear source terms. Part 1 %J Journal of nonlinear sciences and its applications %D 2016 %P 736-756 %V 9 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.03/ %R 10.22436/jnsa.009.03.03 %G en %F JNSA_2016_9_3_a2
Boulaaras, Salah. Asymptotic behavior and a posteriori error estimates in Sobolev space for the generalized overlapping domain decomposition method for evolutionary HJB equation with nonlinear source terms. Part 1. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 736-756. doi : 10.22436/jnsa.009.03.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.03/
[1] A posteriori error estimation in finite element analysis, Wiley-Interscience [John Wiley & Sons], New York, 2000
[2] A posteriori error estimates for the generalized overlapping domain decomposition methods, J. Appl. Math., Volume 2012 (2012), pp. 1-15
[3] Contrôle impulsionnel et in équations quasi-variationnelles, Gauthier-Villars, California, 1984
[4] A posteriori error analysis for two-overlapping domain decomposition techniques, Appl. Numer. Math., Volume 59 (2009), pp. 1214-1236
[5] Asymptotic behavior and a posteriori error estimates for the generalized overlapping domain decomposition method for parabolic equation, Bound. Value Probl., Volume 2015 (2015), pp. 1-16
[6] The maximum norm analysis of an overlapping Shwarz method for parabolic quasi-variational inequalities related to impulse control problem with the mixed boundary conditions, Appl. Math. Inf. Sci., Volume 7 (2013), pp. 343-353
[7] The finite element approximation of evolutionary Hamilton-Jacobi-Bellman equations with non-linear source terms, Indag. Math., Volume 24 (2013), pp. 161-173
[8] A new proof for the existence and uniqueness of the discrete evolutionary HJB equation, Appl. Math. Comput., Volume 262 (2015), pp. 42-55
[9] A general case for the maximum norm analysis of an overlapping Schwarz methods of evolutionary HJB equation with nonlinear source terms with the mixed boundary conditions , Appl. Math. Inf. Sci., Volume 9 (2015), pp. 1247-1257
[10] The finite element approximation oft Hamilton-Jacobi-Bellman equations, Comput. Mah. Appl., Volume 41 (2001), pp. 993-1007
[11] Geometry related convergence results for domain decomposition algorithms, SIAM J. Numer. Anal., Volume 28 (1991), pp. 378-391
[12] Maximum principle and uniform convergence for the finite element method, Comput. Methods Appl. Mech. Engrg., Volume 2 (1973), pp. 17-31
[13] Approximation numerique d une inequation quasi-variationnelle liee a des problemes de gestion de stock, RAIRO Anal. Numer., Volume 14 (1980), pp. 335-346
[14] On finite element approximation in the \(L^\infty\)-norm of variational inequalities, Numer. Math., Volume 47 (1985), pp. 45-57
[15] An accelerated domain decomposition procedure based on Robin transmission conditions, BIT, Volume 37 (1997), pp. 678-686
[16] Absorbing boundary conditions for domain decomposition, Appl. Numer. Math., Volume 27 (1998), pp. 341-365
[17] Vista in domain decomposition methods , Comput. Methods Appl. Mech. Eng., Volume 184 (2000), pp. 143-520
[18] Overlapping domain decomposition methods for elliptic quasi-variational inequalities related to impulse control problem with mixed boundary conditions, Proc. Indian Acad. Sci. Math. Sci., Volume 121 (2011), pp. 481-493
[19] On the Schwarz alternating method. I. First international symposium on domain decomposition methods for partial differential equations, SIAM, Philadelphia (1988), pp. 1-42
[20] On the Schwarz alternating method. II.Stochastic interpretation and order properties. domain decomposition methods, SIAM, Philadelphia (1989), pp. 47-70
[21] Improved ad hoc interface conditions for Schwarz solution procedure tuned to highly heterogeneous media, Appl. Math. Model., Volume 30 (2006), pp. 731-743
[22] A survey of various absorbing interface conditions for the Schwarz algorithm tuned to highly heterogeneous media, in domain decomposition methods, Gakuto international series, Math. Sci. Appl., Volume 25 (2006), pp. 65-93
[23] Recent developments on optimized Schwarz methods, Lect. Notes Comput. Sci. Eng., Springer, Berlin (2007), pp. 115-125
[24] A posteriori estimates for a non-overlapping domain decomposition method, Computing, Volume 62 (1999), pp. 27-43
[25] Domain decomposition methods for partial differential equations, The Clarendon Press, Oxford University Press, New York, 1999
[26] Domain decomposition methods: recent advances and new challenges in engineering, Comput. Methods Appl. Mech. Engrg., Volume 196 (2007), pp. 1345-1346
[27] Domain decomposition methods algorithms and theory, Springer, Berlin, 2005
[28] A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley-Teubner, Stuttgart, 1996
Cité par Sources :