Fixed and common fixed point results for cyclic mappings of $\Omega$-distance
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 727-735.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Jleli and Samet in [M. Jleli, B. Samet, Int. J. Anal., 2012 (2012), 7 pages] pointed out that some of fixed point theorems in G-metric spaces can be derived from classical metric spaces. In this paper, we utilize the concept of $\Omega$-distance in sense of Saadati et al. [R. Saadati, S. M. Vaezpour, P. Vetro, B. E. Rhoades, Math. Comput. Modeling, 52 (2010), 797-801] to introduce new fixed point and common fixed point results for mappings of cyclic form, through the concept of G-metric space in sense of Mustafa and Sims [ Z. Mustafa, B. Sims, J. Nonlinear Convex Anal., 7 (2006), 289-297]. We underline that the method of Jleli and Samet cannot be applied to our results.
DOI : 10.22436/jnsa.009.03.02
Classification : 47H10, 54H25
Keywords: Nonlinear contraction, G-metric space, common fixed point, \(\Omega\)-distance.

Shatanawi, Wasfi 1 ; Bataihah, Anwar 2 ; Pitea, Ariana 3

1 Department of Mathematics, Faculty of Science, Hashemite University, Zarqa, Jordan
2 Department of Mathematics, Faculty of Science, Irbid National University, Zarqa, Jordan
3 Department of Mathematics and Informatics, University Politehnica of Bucharest, Bucharest, 060042, Romania
@article{JNSA_2016_9_3_a1,
     author = {Shatanawi, Wasfi and Bataihah, Anwar and Pitea, Ariana},
     title = {Fixed and common fixed point results for cyclic mappings of {\(\Omega\)-distance}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {727-735},
     publisher = {mathdoc},
     volume = {9},
     number = {3},
     year = {2016},
     doi = {10.22436/jnsa.009.03.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.02/}
}
TY  - JOUR
AU  - Shatanawi, Wasfi
AU  - Bataihah, Anwar
AU  - Pitea, Ariana
TI  - Fixed and common fixed point results for cyclic mappings of \(\Omega\)-distance
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 727
EP  - 735
VL  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.02/
DO  - 10.22436/jnsa.009.03.02
LA  - en
ID  - JNSA_2016_9_3_a1
ER  - 
%0 Journal Article
%A Shatanawi, Wasfi
%A Bataihah, Anwar
%A Pitea, Ariana
%T Fixed and common fixed point results for cyclic mappings of \(\Omega\)-distance
%J Journal of nonlinear sciences and its applications
%D 2016
%P 727-735
%V 9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.02/
%R 10.22436/jnsa.009.03.02
%G en
%F JNSA_2016_9_3_a1
Shatanawi, Wasfi; Bataihah, Anwar; Pitea, Ariana. Fixed and common fixed point results for cyclic mappings of \(\Omega\)-distance. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 3, p. 727-735. doi : 10.22436/jnsa.009.03.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.03.02/

[1] Al-Thagafi, M. A.; N. Shahzad Convergence and existence for best proximity points, Nonlinear Anal., Volume 70 (2009), pp. 3665-3671

[2] Anurdha, J.; P. Veeramani Proximal pointwise contraction, Topology Appl., Volume 156 (2009), pp. 2942-2948

[3] Aydi, H.; Postolache, M.; Shatanawi, W. Coupled fixed point results for ( \(\psi,\phi\))-weakly contractive mappings in ordered G-metric spaces, Comput. Math. Appl., Volume 63 (2012), pp. 298-309

[4] Aydi, H.; Shatanawi, W.; Vetro, C. On generalized weakly G-contraction mapping in G-metric spaces, Comput. Math. Appl., Volume 62 (2011), pp. 4222-4229

[5] Bilgili, N.; Karapinar, E. Cyclic contractions via auxiliary functions on G-metric spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-16

[6] Chandok, S.; Mustafa, Z.; Postolache, M. Coupled common fixed point results for mixed g-monotone mapps in partially ordered G-metric spaces , Politehn. Univ. Bucharest Sci. Bull. Ser. A, Appl. Math. Phys., Volume 75 (2013), pp. 13-26

[7] Chandok, S.; Postolache, M. Fixed point theorem for weakly Chatterjea-type cyclic contractions, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-9

[8] Chugh, R.; Rhoades, B. E.; Aggarwal, M. Coupled fixed points of Geraghty-type mappings in G-metric spaces, J. Adv. Math. Stud., Volume 6 (2013), pp. 127-142

[9] Eldered, A. A.; P. Veeramani Existence and convergence of best proximity points, J. Math. Anal. Appl., Volume 323 (2006), pp. 1001-1006

[10] Gholizadeh, L.; Saadati, R.; Shatanawi, W.; Vaezpour, S. M. Contractive mapping in generalized, ordered metric spaces with application in integral equations, Math. Probl. Eng., Volume 2011 (2011), pp. 1-14

[11] Jleli, M.; Samet, B. Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-7

[12] Karpagam, S.; S. Agrawal Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps, Nonlinear Anal., Volume 74 (2011), pp. 1040-1046

[13] Karapinar, E.; Agarwal, R. P. Further fixed point results on G-metric spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-14

[14] Karapinar, E.; Erhan, I. M. Best proximity point on different type contractions, Appl. Math. Inf. Sci., Volume 5 (2011), pp. 558-569

[15] Mustafa, Z.; B. Sims A new approach to generalized metric spaces, J. Nonlinear Convex Anal., Volume 7 (2006), pp. 289-297

[16] Păcurar, M.; Rus, I. A. Fixed point theory for cyclic \(\phi\)-contractions, Nonlinear Anal., Volume 72 (2010), pp. 1181-1187

[17] G. Petruşel Cyclic representations and periodic points , Studia Univ. Babes-Bolyai Math., Volume 50 (2005), pp. 107-112

[18] Popa, V.; Patriciu, A. M. A general fixed point theorem for mappings on incomplete G-metric spaces, J. Adv. Math. Stud., Volume 7 (2014), pp. 144-150

[19] Saadati, R.; Vaezpour, S. M.; Vetro, P.; Rhoades, B. E. Fixed point theorems in generalized partially ordered G-metric spaces, Math. Comput. Modeling, Volume 52 (2010), pp. 797-801

[20] Samet, B.; Vetro, C.; Vetro, F. Remarks on G-metric spaces, Int. J. Anal., Volume 2013 (2013), pp. 1-6

[21] Shatanawi, W.; Manro, S. Fixed point results for cyclic (\(\phi,\psi,A,B\))-contraction in partial metric spaces , Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-13

[22] Shatanawi, W.; A. Pitea Omega-distance and coupled fixed point in G-metric spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-15

[23] Shatanawi, W.; A. Pitea Fixed and coupled fixed point theorems of \(\Omega\)-distance for nonlinear contraction, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-16

[24] Shatanawi, W.; Postolache, M. Some fixed point results for a G-weak contraction in G-metric spaces, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-19

[25] Shatanawi, W.; Postolache, M. Common fixed point results for mappings under nonlinear contraction of cyclic form in ordered metric spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-13

[26] C. Vetro Best proximity points: convergence and existence theorems for p-cyclic mappings, Nonlinear Anal., Volume 73 (2010), pp. 2283-2291

Cité par Sources :