Voir la notice de l'article provenant de la source International Scientific Research Publications
Chen, Jiawei 1 ; Liou, Yeong-Cheng 2 ; Khan, Suhel Ahmad 3 ; Wan, Zhongping 4 ; Wen, Ching-Feng 5
@article{JNSA_2016_9_2_a11, author = {Chen, Jiawei and Liou, Yeong-Cheng and Khan, Suhel Ahmad and Wan, Zhongping and Wen, Ching-Feng}, title = {A composition projection method for feasibility problems and applications to equilibrium problems}, journal = {Journal of nonlinear sciences and its applications}, pages = {461-470}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2016}, doi = {10.22436/jnsa.009.02.12}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.12/} }
TY - JOUR AU - Chen, Jiawei AU - Liou, Yeong-Cheng AU - Khan, Suhel Ahmad AU - Wan, Zhongping AU - Wen, Ching-Feng TI - A composition projection method for feasibility problems and applications to equilibrium problems JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 461 EP - 470 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.12/ DO - 10.22436/jnsa.009.02.12 LA - en ID - JNSA_2016_9_2_a11 ER -
%0 Journal Article %A Chen, Jiawei %A Liou, Yeong-Cheng %A Khan, Suhel Ahmad %A Wan, Zhongping %A Wen, Ching-Feng %T A composition projection method for feasibility problems and applications to equilibrium problems %J Journal of nonlinear sciences and its applications %D 2016 %P 461-470 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.12/ %R 10.22436/jnsa.009.02.12 %G en %F JNSA_2016_9_2_a11
Chen, Jiawei; Liou, Yeong-Cheng; Khan, Suhel Ahmad; Wan, Zhongping; Wen, Ching-Feng. A composition projection method for feasibility problems and applications to equilibrium problems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 2, p. 461-470. doi : 10.22436/jnsa.009.02.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.12/
[1] On the convergence of von Neumann's alternating projection algorithm for two sets, Set-Valued Anal., Volume 1 (1993), pp. 185-212
[2] A projection method for approximating fixed points of quasi nonexpansive mappings without the usual demiclosedness conditions, J. Nonlinear Convex Anal., Volume 15 (2014), pp. 129-135
[3] A Bregman projection method for approximating fixed points of quasi-Bregman nonexpansive mappings, Appl. Anal., Volume 94 (2015), pp. 75-84
[4] Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011
[5] From optimization and variational inequalities to equilibrium problems, Math. Stud., Volume 63 (1994), pp. 123-146
[6] A proximal point method for a class of monotone equilibrium problems with linear constraints, Operat. Res. (2015), pp. 275-288
[7] New existence theorems for quasi-equilibrium problems and a minimax theorem on complete metric spaces, J. Global Optim., Volume 57 (2013), pp. 533-547
[8] Existence and algorithms for bilevel generalized mixed equilibrium problems in Banach spaces, J. Global Optim., Volume 53 (2012), pp. 331-346
[9] Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, New York, 1990
[10] A characterization of nonemptiness and boundedness of the solution sets for equilibrium problems, Positivity, Volume 17 (2013), pp. 431-441
[11] Algorithmic and analytical approaches to the split feasibility problems and fixed point problems, Taiwanese J. Math., Volume 17 (2013), pp. 1839-1853
[12] On certain conditions for the existence of solutions of equilibrium problems, Math. Program., Volume 116 (2009), pp. 259-273
[13] Iterative methods for solving systems of variational inequalities in reflexive Banach spaces, SIAM J. Optim., Volume 21 (2011), pp. 1319-1344
[14] Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., Volume 279 (2003), pp. 372-379
[15] Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., Volume 73 (2010), pp. 122-135
[16] Convex Analysis, Princeton University Press, Princeton, NJ, 1970
[17] Products of finitely many resolvents of maximal monotone mappings in reflexive Banach spaces, SIAM J. Optim., Volume 21 (2011), pp. 1289-1308
[18] Compositions and averages of two resolvents: Relative geometry of fixed points sets and a partial answer to a question by C. Byrne, Nonlinear Anal., Volume 74 (2011), pp. 4550-4572
Cité par Sources :