A composition projection method for feasibility problems and applications to equilibrium problems
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 2, p. 461-470.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this article, we propose a composition projection algorithm for solving feasibility problem in Hilbert space. The convergence of the proposed algorithm are established by using gap vector which does not involve the nonempty intersection assumption. Moreover, we provide the sufficient and necessary condition for the convergence of the proposed method. As an application, we investigate the split feasibility equilibrium problem.
DOI : 10.22436/jnsa.009.02.12
Classification : 47H09, 65K10, 90C25
Keywords: Feasibility problem, gap vector, projection, split feasibility equilibrium problem.

Chen, Jiawei 1 ; Liou, Yeong-Cheng 2 ; Khan, Suhel Ahmad 3 ; Wan, Zhongping 4 ; Wen, Ching-Feng 5

1 School of Mathematics and Statistics, Southwest University, Chongqing 400715, China;College of Computer Science, Chongqing University, Chongqing 400044, China
2 Department of Information Management, Cheng Shiu University, Kaohsiung 833, Taiwan
3 Department of Mathematics, BITS-Pilani, Dubai Campus, Dubai-345055, UAE
4 School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
5 Center for General Education, Kaohsiung Medical University, Kaohsiung 807, Taiwan
@article{JNSA_2016_9_2_a11,
     author = {Chen, Jiawei and Liou, Yeong-Cheng and Khan, Suhel Ahmad and Wan, Zhongping and Wen, Ching-Feng},
     title = {A composition projection method for feasibility problems and applications to equilibrium problems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {461-470},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2016},
     doi = {10.22436/jnsa.009.02.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.12/}
}
TY  - JOUR
AU  - Chen, Jiawei
AU  - Liou, Yeong-Cheng
AU  - Khan, Suhel Ahmad
AU  - Wan, Zhongping
AU  - Wen, Ching-Feng
TI  - A composition projection method for feasibility problems and applications to equilibrium problems
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 461
EP  - 470
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.12/
DO  - 10.22436/jnsa.009.02.12
LA  - en
ID  - JNSA_2016_9_2_a11
ER  - 
%0 Journal Article
%A Chen, Jiawei
%A Liou, Yeong-Cheng
%A Khan, Suhel Ahmad
%A Wan, Zhongping
%A Wen, Ching-Feng
%T A composition projection method for feasibility problems and applications to equilibrium problems
%J Journal of nonlinear sciences and its applications
%D 2016
%P 461-470
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.12/
%R 10.22436/jnsa.009.02.12
%G en
%F JNSA_2016_9_2_a11
Chen, Jiawei; Liou, Yeong-Cheng; Khan, Suhel Ahmad; Wan, Zhongping; Wen, Ching-Feng. A composition projection method for feasibility problems and applications to equilibrium problems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 2, p. 461-470. doi : 10.22436/jnsa.009.02.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.12/

[1] Bauschke, H. H.; J. M. Borwein On the convergence of von Neumann's alternating projection algorithm for two sets, Set-Valued Anal., Volume 1 (1993), pp. 185-212

[2] Bauschke, H. H.; Chen, J.; Wang, X. A projection method for approximating fixed points of quasi nonexpansive mappings without the usual demiclosedness conditions, J. Nonlinear Convex Anal., Volume 15 (2014), pp. 129-135

[3] Bauschke, H. H.; Chen, J.; X.Wang A Bregman projection method for approximating fixed points of quasi-Bregman nonexpansive mappings, Appl. Anal., Volume 94 (2015), pp. 75-84

[4] Bauschke, H. H.; Combettes, P. L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer, New York, 2011

[5] Blum, E.; W. Oettli From optimization and variational inequalities to equilibrium problems, Math. Stud., Volume 63 (1994), pp. 123-146

[6] Chen, J.; Liou, Y. C.; Wan, Z.; Yao, J. C. A proximal point method for a class of monotone equilibrium problems with linear constraints, Operat. Res. (2015), pp. 275-288

[7] Chuang, C. S.; Lin, L. J. New existence theorems for quasi-equilibrium problems and a minimax theorem on complete metric spaces, J. Global Optim., Volume 57 (2013), pp. 533-547

[8] Ding, X. P.; Liou, Y. C.; Yao, J. C. Existence and algorithms for bilevel generalized mixed equilibrium problems in Banach spaces, J. Global Optim., Volume 53 (2012), pp. 331-346

[9] Goebel, K.; Kirk, W. A. Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press, New York, 1990

[10] Hu, R.; Fang, Y. P. A characterization of nonemptiness and boundedness of the solution sets for equilibrium problems, Positivity, Volume 17 (2013), pp. 431-441

[11] Liou, Y. C.; Zhu, L. J.; Yao, Y.; Chyu, C. C. Algorithmic and analytical approaches to the split feasibility problems and fixed point problems, Taiwanese J. Math., Volume 17 (2013), pp. 1839-1853

[12] Iusem, A. N.; Kassay, G.; Sosa, W. On certain conditions for the existence of solutions of equilibrium problems, Math. Program., Volume 116 (2009), pp. 259-273

[13] Kassay, G.; Reich, S.; Sabach, S. Iterative methods for solving systems of variational inequalities in reflexive Banach spaces, SIAM J. Optim., Volume 21 (2011), pp. 1319-1344

[14] Nakajo, K.; Takahashi, W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., Volume 279 (2003), pp. 372-379

[15] Reich, S.; Sabach, S. Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal., Volume 73 (2010), pp. 122-135

[16] Rockafellar, R. T. Convex Analysis, Princeton University Press, Princeton, NJ, 1970

[17] Sabach, S. Products of finitely many resolvents of maximal monotone mappings in reflexive Banach spaces, SIAM J. Optim., Volume 21 (2011), pp. 1289-1308

[18] Wang, X.; Bauschke, H. H. Compositions and averages of two resolvents: Relative geometry of fixed points sets and a partial answer to a question by C. Byrne, Nonlinear Anal., Volume 74 (2011), pp. 4550-4572

Cité par Sources :