Anti-periodic BVP for Volterra integro-differential equation of fractional order $1\alpha \leq 2$, involving Mittag-Leffler function in the kernel
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 2, p. 452-460.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider an anti-periodic Boundary Value Problem for Volterra integro-differential equation of fractional order $1\alpha \leq 2$; with generalized Mittag-Leffler function in the kernel. Some existence and uniqueness results are obtained by using some well known fixed point theorems. We give some examples to exhibit our results.
DOI : 10.22436/jnsa.009.02.11
Classification : 34A08, 34B15
Keywords: Fractional derivative, fractional integral, Caputo fractional derivative, boundary value problem, Caputo fractional boundary value problem, integral operators, Mittag-Leffler functions.

Aktuğlu, Hüseyin 1 ; Özarslan, Mehmet Ali 1

1 Eastern Mediterranean University, Gazimagusa, TRNC, Mersin 10, Turkey
@article{JNSA_2016_9_2_a10,
     author = {Aktu\u{g}lu, H\"useyin and \"Ozarslan, Mehmet Ali},
     title = {Anti-periodic {BVP} for {Volterra} integro-differential equation of fractional order \(1<\alpha \leq 2\), involving {Mittag-Leffler} function in the kernel},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {452-460},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2016},
     doi = {10.22436/jnsa.009.02.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.11/}
}
TY  - JOUR
AU  - Aktuğlu, Hüseyin
AU  - Özarslan, Mehmet Ali
TI  - Anti-periodic BVP for Volterra integro-differential equation of fractional order \(1<\alpha \leq 2\), involving Mittag-Leffler function in the kernel
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 452
EP  - 460
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.11/
DO  - 10.22436/jnsa.009.02.11
LA  - en
ID  - JNSA_2016_9_2_a10
ER  - 
%0 Journal Article
%A Aktuğlu, Hüseyin
%A Özarslan, Mehmet Ali
%T Anti-periodic BVP for Volterra integro-differential equation of fractional order \(1<\alpha \leq 2\), involving Mittag-Leffler function in the kernel
%J Journal of nonlinear sciences and its applications
%D 2016
%P 452-460
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.11/
%R 10.22436/jnsa.009.02.11
%G en
%F JNSA_2016_9_2_a10
Aktuğlu, Hüseyin; Özarslan, Mehmet Ali. Anti-periodic BVP for Volterra integro-differential equation of fractional order \(1<\alpha \leq 2\), involving Mittag-Leffler function in the kernel. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 2, p. 452-460. doi : 10.22436/jnsa.009.02.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.11/

[1] Abdeljawad, T.; Baleanu, D. Caputa q-fractional initial value problems and a q-analogue Mittag-Leffler function, Commun. Nonlinear Sci. Numer. Simulat., Volume 16 (2011), pp. 4682-4688

[2] Abdeljawad, T.; D. Baleanu Fractional differences and integration by parts, J. Comput. Anal. Appl., Volume 13 (2011), pp. 574-582

[3] Agarwal, R. P.; B. Ahmad Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions, Comput. Math. Appl., Volume 62 (2011), pp. 1200-1214

[4] Agarwal, P.; Choi, J.; Paris, R. B. Extended Riemann-Liouville fractional derivative operator and its applications, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 451-466

[5] Agarwal, R. P.; Wang, G.; Hobiny, A.; Zhang, L.; Ahmad, B. Existence and nonexistence of solutions for nonlinear second order q-integro-difference equations with non-separated boundary conditions, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 976-985

[6] Aghajani, A.; Jalilian, Y.; Trujillo, J. J. On the existence of solutions of fractional integro-differential equations, Fract. Calc, Appl. Anal., Volume 15 (2012), pp. 44-69

[7] Ahmad, B. Existence of soultions for fractional differential equations of order \(q \in (2; 3]\) with anti-periodic boundary conditions, J. Appl. Math. Comput., Volume 34 (2010), pp. 385-391

[8] Ahmad, B.; Nieto, J. J. Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., Volume 58 (2009), pp. 1838-1843

[9] Ahmad, B.; Nieto, J. J. Anti-periodic fractional boundary value problems, Comput. Math. Appl., Volume 62 (2011), pp. 1150-1156

[10] Alsaedi, A.; Ahmad, B.; Assolami, A. On Antiperiodic Boundary Value Problems for Higher-Order Fractional Differential Equations, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-15

[11] Aktuğlu, H.; M. A. Özarslan On the solvability of Caputo q-fractional boundary value problem involving p-Laplacian operator, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-8

[12] Aktuğlu, H.; Özarslan, M. A. Solvability of differential equations of order \(2 < \alpha <= 3\) involving the p-Laplacian operator with boundary conditions, Adv. Differ. Eqn., Volume 2013 (2013), pp. 1-13

[13] Chen, T.; Liu, W. An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian operator, Appl. Math. Lett., Volume 25 (2012), pp. 1671-1675

[14] Ding, X. L.; Y. L. Jiang Semilinear fractional differential equations base on a new integral operator approach, Commun. Nonlinear Sci. Numer. Simulat., Volume 17 (2012), pp. 5143-5150

[15] Granas, A.; Dugundji, J. Fixed point theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003

[16] Kilbas, A. A.; Saigo, M.; Saxena, R. K. Solutions of volterra integro-differential equations with generalized Mittag-Leffler function in the kernels, J. Int. Equ. Appl., Volume 14 (2002), pp. 377-396

[17] Kilbas, A. A.; Saigo, M.; Saxena, R. K. Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms Spec. Funct., Volume 15 (2004), pp. 31-49

[18] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Amsterdam, 2006

[19] Li, C. P.; Qian, D. L.; Chen, Y. Q. On Riemann-Liouville and Caputo derivatives, Discrete Dyn. Nat. Soc., Volume 2011 (2011), pp. 1-15

[20] Liu, X.; Jia, M.; Hiang, X. On the solvability of a fractional differential equation model involving the p-Laplacian operator, Comput. Math. Appl., Volume 64 (2012), pp. 3267-3275

[21] Mittag-Leffler, G. M. Sur la nouvelle fonction \(E_\alpha(x)\), C. R. Acad. Sci. Paris, Volume 137 (1903), pp. 554-558

[22] Podlubny, I. Fractional differential equations, Academy Press, San Diego, 1999

[23] Prabhakar, T. R. A singular integral equation with a general Mittag-Leffler function in the kernel, Yokohama Math. J., Volume 19 (1971), pp. 7-15

[24] Samko, S. G.; Kilbas, A. A.; Marichev, O. I. Fractional integral and derivatives, Gordon and Breach Science, Yverdon, 1993

[25] Srivastava, H. M.; Tomovski, Z. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., Volume 211 (2009), pp. 198-210

[26] Tomovski, Z. Generalized Cauchy type problems for nonlinear fractional differential equations with composite fractional derivative operator, Nonlinear Anal., Volume 75 (2012), pp. 3364-3384

[27] Tomovski, Z.; R. Garra Analytic solutions of fractional integro-differential equations of volterra type with variable coeficients, Fract. Calc. Appl. Anal., Volume 17 (2014), pp. 38-60

[28] Tomovski, Z.; Hilfer, R.; Srivastava, H. M. Fractional operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Int. Trans. Spec. Func., Volume 21 (2010), pp. 797-814

[29] G.Wang; Ahmad, B.; Zhang, L. Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear Anal., Volume 74 (2011), pp. 792-804

Cité par Sources :