Voir la notice de l'article provenant de la source International Scientific Research Publications
Aktuğlu, Hüseyin 1 ; Özarslan, Mehmet Ali 1
@article{JNSA_2016_9_2_a10, author = {Aktu\u{g}lu, H\"useyin and \"Ozarslan, Mehmet Ali}, title = {Anti-periodic {BVP} for {Volterra} integro-differential equation of fractional order \(1<\alpha \leq 2\), involving {Mittag-Leffler} function in the kernel}, journal = {Journal of nonlinear sciences and its applications}, pages = {452-460}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2016}, doi = {10.22436/jnsa.009.02.11}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.11/} }
TY - JOUR AU - Aktuğlu, Hüseyin AU - Özarslan, Mehmet Ali TI - Anti-periodic BVP for Volterra integro-differential equation of fractional order \(1<\alpha \leq 2\), involving Mittag-Leffler function in the kernel JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 452 EP - 460 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.11/ DO - 10.22436/jnsa.009.02.11 LA - en ID - JNSA_2016_9_2_a10 ER -
%0 Journal Article %A Aktuğlu, Hüseyin %A Özarslan, Mehmet Ali %T Anti-periodic BVP for Volterra integro-differential equation of fractional order \(1<\alpha \leq 2\), involving Mittag-Leffler function in the kernel %J Journal of nonlinear sciences and its applications %D 2016 %P 452-460 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.11/ %R 10.22436/jnsa.009.02.11 %G en %F JNSA_2016_9_2_a10
Aktuğlu, Hüseyin; Özarslan, Mehmet Ali. Anti-periodic BVP for Volterra integro-differential equation of fractional order \(1<\alpha \leq 2\), involving Mittag-Leffler function in the kernel. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 2, p. 452-460. doi : 10.22436/jnsa.009.02.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.11/
[1] Caputa q-fractional initial value problems and a q-analogue Mittag-Leffler function, Commun. Nonlinear Sci. Numer. Simulat., Volume 16 (2011), pp. 4682-4688
[2] Fractional differences and integration by parts, J. Comput. Anal. Appl., Volume 13 (2011), pp. 574-582
[3] Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions, Comput. Math. Appl., Volume 62 (2011), pp. 1200-1214
[4] Extended Riemann-Liouville fractional derivative operator and its applications, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 451-466
[5] Existence and nonexistence of solutions for nonlinear second order q-integro-difference equations with non-separated boundary conditions, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 976-985
[6] On the existence of solutions of fractional integro-differential equations, Fract. Calc, Appl. Anal., Volume 15 (2012), pp. 44-69
[7] Existence of soultions for fractional differential equations of order \(q \in (2; 3]\) with anti-periodic boundary conditions, J. Appl. Math. Comput., Volume 34 (2010), pp. 385-391
[8] Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., Volume 58 (2009), pp. 1838-1843
[9] Anti-periodic fractional boundary value problems, Comput. Math. Appl., Volume 62 (2011), pp. 1150-1156
[10] On Antiperiodic Boundary Value Problems for Higher-Order Fractional Differential Equations, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-15
[11] On the solvability of Caputo q-fractional boundary value problem involving p-Laplacian operator, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-8
[12] Solvability of differential equations of order \(2 < \alpha <= 3\) involving the p-Laplacian operator with boundary conditions, Adv. Differ. Eqn., Volume 2013 (2013), pp. 1-13
[13] An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian operator, Appl. Math. Lett., Volume 25 (2012), pp. 1671-1675
[14] Semilinear fractional differential equations base on a new integral operator approach, Commun. Nonlinear Sci. Numer. Simulat., Volume 17 (2012), pp. 5143-5150
[15] Fixed point theory, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003
[16] Solutions of volterra integro-differential equations with generalized Mittag-Leffler function in the kernels, J. Int. Equ. Appl., Volume 14 (2002), pp. 377-396
[17] Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transforms Spec. Funct., Volume 15 (2004), pp. 31-49
[18] Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Amsterdam, 2006
[19] On Riemann-Liouville and Caputo derivatives, Discrete Dyn. Nat. Soc., Volume 2011 (2011), pp. 1-15
[20] On the solvability of a fractional differential equation model involving the p-Laplacian operator, Comput. Math. Appl., Volume 64 (2012), pp. 3267-3275
[21] Sur la nouvelle fonction \(E_\alpha(x)\), C. R. Acad. Sci. Paris, Volume 137 (1903), pp. 554-558
[22] Fractional differential equations, Academy Press, San Diego, 1999
[23] A singular integral equation with a general Mittag-Leffler function in the kernel, Yokohama Math. J., Volume 19 (1971), pp. 7-15
[24] Fractional integral and derivatives, Gordon and Breach Science, Yverdon, 1993
[25] Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., Volume 211 (2009), pp. 198-210
[26] Generalized Cauchy type problems for nonlinear fractional differential equations with composite fractional derivative operator, Nonlinear Anal., Volume 75 (2012), pp. 3364-3384
[27] Analytic solutions of fractional integro-differential equations of volterra type with variable coeficients, Fract. Calc. Appl. Anal., Volume 17 (2014), pp. 38-60
[28] Fractional operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Int. Trans. Spec. Func., Volume 21 (2010), pp. 797-814
[29] Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear Anal., Volume 74 (2011), pp. 792-804
Cité par Sources :