Symmetric identities of higher-order degenerate q-Euler polynomials
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 2, p. 443-451.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study the higher-order degenerate $q$-Euler polynomials and give some identities of symmetry on these polynomials derived from symmetric properties for certain multivariate fermionic $p$-adic $q$-integrals on $\mathbb{Z}_p$.
DOI : 10.22436/jnsa.009.02.10
Classification : 11B75, 11B83, 11S80
Keywords: Symmetry, identity, higher-order degenerate q-Euler polynomial.

Kim, Dae San 1 ; Kim, Taekyun 2

1 Department of Mathematics, Sogang University, , ., Seoul 121-742, Republic of Korea
2 Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
@article{JNSA_2016_9_2_a9,
     author = {Kim, Dae San and Kim, Taekyun},
     title = {Symmetric identities of higher-order degenerate {q-Euler} polynomials},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {443-451},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2016},
     doi = {10.22436/jnsa.009.02.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.10/}
}
TY  - JOUR
AU  - Kim, Dae San
AU  - Kim, Taekyun
TI  - Symmetric identities of higher-order degenerate q-Euler polynomials
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 443
EP  - 451
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.10/
DO  - 10.22436/jnsa.009.02.10
LA  - en
ID  - JNSA_2016_9_2_a9
ER  - 
%0 Journal Article
%A Kim, Dae San
%A Kim, Taekyun
%T Symmetric identities of higher-order degenerate q-Euler polynomials
%J Journal of nonlinear sciences and its applications
%D 2016
%P 443-451
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.10/
%R 10.22436/jnsa.009.02.10
%G en
%F JNSA_2016_9_2_a9
Kim, Dae San; Kim, Taekyun. Symmetric identities of higher-order degenerate q-Euler polynomials. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 2, p. 443-451. doi : 10.22436/jnsa.009.02.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.10/

[1] Abramowitz, M.; Stegun, I. A. Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55 , Washington, D.C., 1964

[2] Araci, S.; Acikgoz, M. A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials, Adv. Stud. Contemp. Math. (Kyungshang), Volume 22 (2012), pp. 399-406

[3] Bayad, A.; Chikhi, J. Apostol-Euler polynomials and asymptotics for negative binomial reciprocals, Adv. Stud. Contemp. Math. (Kyungshang), Volume 24 (2014), pp. 33-37

[4] Carlitz, L. q-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc., Volume 76 (1954), pp. 332-350

[5] Carlitz, L. Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math., Volume 15 (1979), pp. 51-88

[6] Dere, R.; Simsek, Y. Applications of umbral algebra to some special polynomials, Adv. Stud. Contemp. Math. (Kyungshang), Volume 22 (2012), pp. 433-438

[7] Dolgy, D. V.; Kim, D. S.; Kim, T. G.; Seo, J. J. Identities of symmetry for higher-order generalized q-Euler polynomials, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-6

[8] He, Y.; Araci, S.; Srivastava, H. M.; Acikgoz, M. Some new identities for the Apostol-Bernoulli polynomials and the Apostol-Genocchi polynomials, Appl. Math. Comput., Volume 262 (2015), pp. 31-41

[9] He, Y.; C.Wang New symmetric identities involving the Eulerian polynomials, J. Comput. Anal. Appl., Volume 17 (2014), pp. 498-504

[10] Hwang, K.-W.; Dolgy, D. V.; Kim, D. S.; Kim, T.; S. H. Lee Some theorems on Bernoulli and Euler numbers, Ars Combin., Volume 109 (2013), pp. 285-297

[11] Jin, J. H.; Mansour, T.; Moon, E.-J.; Park, J.-W. On the (r; q)-Bernoulli and (r; q)-Euler numbers and polynomials, J. Comput. Anal. Appl., Volume 19 (2015), pp. 250-259

[12] Kim, T. Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on \(\mathbb{Z}_p\), Russ. J. Math. Phys., Volume 16 (2009), pp. 93-96

[13] Kim, D. S. Symmetry identities for generalized twisted Euler polynomials twisted by unramified roots of unity, Proc. Jangjeon Math. Soc., Volume 15 (2012), pp. 303-316

[14] Kim, T.; Choi, J. Y.; Sug, J. Y. Extended q-Euler numbers and polynomials associated with fermionic p-adic q-integral on \(\mathbb{Z}_p\), Russ. J. Math. Phys., Volume 14 (2007), pp. 160-163

[15] Kim, D. S.; Kim, T.; Lee, S.-H.; Seo, J.-J. Identities of symmetry for higher-order q-Euler polynomials, Proc. Jangjeon Math. Soc., Volume 17 (2014), pp. 161-167

[16] Kim, D. S.; Lee, N.; Na, J.; Park, K. H. Identities of symmetry for higher-order Euler polynomials in three variables (I), Adv. Stud. Contemp. Math. (Kyungshang), Volume 22 (2012), pp. 51-74

[17] Luo, Q.-M. q-analogues of some results for the Apostol-Euler polynomials, Adv. Stud. Contemp. Math. (Kyungshang), Volume 20 (2010), pp. 103-113

[18] Ozden, H.; Simsek, Y.; Rim, S.-H.; Cangul, I. N. A note on p-adic q-Euler measure, Adv. Stud. Contemp. Math. (Kyungshang), Volume 14 (2007), pp. 233-239

[19] Rim, S.-H.; Jeong, J. On the modified q-Euler numbers of higher order with weight, Adv. Stud. Contemp. Math. (Kyungshang), Volume 22 (2012), pp. 93-98

[20] Ryoo, C. S. A note on the weighted q-Euler numbers and polynomials, Adv. Stud. Contemp. Math. (Kyungshang), Volume 21 (2011), pp. 47-54

[21] Şen, E. Theorems on Apostol-Euler polynomials of higher order arising from Euler basis, Adv. Stud. Contemp. Math. (Kyungshang), Volume 23 (2013), pp. 337-345

[22] Simsek, Y. Interpolation functions of the Eulerian type polynomials and numbers, Adv. Stud. Contemp. Math. (Kyungshang), Volume 23 (2013), pp. 301-307

[23] Wang, N.; Li, C.; Li, H. Some identities on the generalized higher-order Euler and Bernoulli numbers, Ars Combin., Volume 102 (2011), pp. 517-528

Cité par Sources :