Matrix Sturm-Liouville operators with boundary conditions dependent on the spectral parameter
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 2, p. 435-442.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Let $L$ denote the operator generated in$L_2(\mathbb{R}_+;E)$ by the differential expression
$l(y) = -y'' + Q(x)y; \qquad x \in \mathbb{R}_+$
; and the boundary condition $(A_0 + A_1\lambda)Y' (0; \lambda) - (B_0 + B_1\lambda)Y (0; \lambda) = 0$ , where $Q$ is a matrix-valued function and $A_0; A_1; B_0; B_1$ are non-singular matrices, with $A_0B_1 - A_1B_0 \neq 0$: In this paper, using the uniqueness theorems of analytic functions, we investigate the eigenvalues and the spectral singularities of $L$. In particular, we obtain the conditions on q under which the operator $L$ has a finite number of the eigenvalues and the spectral singularities.
DOI : 10.22436/jnsa.009.02.09
Classification : 34B24, 47A10, 34L40
Keywords: Eigenvalues, spectral singularities, spectral analysis, Sturm-Liouville operator, non-selfadjoint matrix operator

Katar, Deniz 1 ; Olgun, Murat 1 ; Coskun, Cafer 1

1 Faculty of Sciences, Department of Mathematics, Ankara University, Ankara, Turkey
@article{JNSA_2016_9_2_a8,
     author = {Katar, Deniz and Olgun, Murat and Coskun, Cafer},
     title = {Matrix {Sturm-Liouville} operators with boundary conditions dependent on the spectral parameter},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {435-442},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2016},
     doi = {10.22436/jnsa.009.02.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.09/}
}
TY  - JOUR
AU  - Katar, Deniz
AU  - Olgun, Murat
AU  - Coskun, Cafer
TI  - Matrix Sturm-Liouville operators with boundary conditions dependent on the spectral parameter
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 435
EP  - 442
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.09/
DO  - 10.22436/jnsa.009.02.09
LA  - en
ID  - JNSA_2016_9_2_a8
ER  - 
%0 Journal Article
%A Katar, Deniz
%A Olgun, Murat
%A Coskun, Cafer
%T Matrix Sturm-Liouville operators with boundary conditions dependent on the spectral parameter
%J Journal of nonlinear sciences and its applications
%D 2016
%P 435-442
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.09/
%R 10.22436/jnsa.009.02.09
%G en
%F JNSA_2016_9_2_a8
Katar, Deniz; Olgun, Murat; Coskun, Cafer. Matrix Sturm-Liouville operators with boundary conditions dependent on the spectral parameter. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 2, p. 435-442. doi : 10.22436/jnsa.009.02.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.09/

[1] Adivar, M.; Bairamov, E. Difference equations of second order with spectral singularities, J. Math. Anal. Appl., Volume 277 (2003), pp. 714-721

[2] Agranovich, Z. S.; Marchenko, V. A. The inverse problem of scattering theory, Gordon and Breach, New York, 1963

[3] Bairamov, E.; Cakar, O.; Celebi, A. O. Quadratic pencil of Schrödinger operators with spectral singularities: Discrete spectrum and principal functions, J. Math. Anal. Appl., Volume 216 (1997), pp. 303-320

[4] Bairamov, E.; Cakar, O.; Krall, A. M. An eigenfunction expansion for a quadratic pencil of a Schrödinger operator with spectral singularities, J. Differential Equations, Volume 151 (1999), pp. 268-289

[5] Bairamov, E.; Cakar, O.; Krall, A. M. Non-selfadjoint difference operators and Jacobi matrices with spectral singularities, Math. Nachr., Volume 229 (2001), pp. 5-14

[6] Bairamov, E.; Celebi, A. O. Spectrum and spectral expansion for the non-selfadjoint discrete Dirac operators, Quart. J. Math. Oxford Ser., Volume 50 (1999), pp. 371-384

[7] Bairamov, E.; Coskun, C. The structure of the spectrum a system of difference equations, Appl. Math. Lett., Volume 18 (2005), pp. 384-394

[8] Bairamov, E.; Seyyidoğlu, S. Non-selfadjoint singular Sturm-Liouville problems with boundary conditions dependent on the eigenparameter, Abstr. Appl. Anal., Volume 2010 (2010), pp. 1-10

[9] Carleson, L. Sets of uniqueness for functions regular in the unit circle, Acta Math., Volume 87 (1952), pp. 325-345

[10] Carlson, R. An inverse problem for the matrix Schrödinger equation, J. Math. Anal. Appl., Volume 267 (2002), pp. 564-575

[11] Clark, S.; F. Gesztesy; Renger, W. Trace formulas and Borg-type theorems for matrix-valued Jacobi and Dirac finite difference operators, J. Differential Equations, Volume 219 (2005), pp. 144-182

[12] Coskun, C.; Olgun, M. Principal functions of non-selfadjoint matrix Sturm-Liouville equations, J. Comput. Appl. Math., Volume 235 (2011), pp. 4834-4838

[13] Dolzhenko, E. P. Boundary value uniqueness theorems for analytic functions, Math. Notes, Volume 25 (1979), pp. 437-442

[14] Gesztesy, F.; Kiselev, A.; Makarov, K. A. Uniqueness results for matrix-valued Schrödinger, Jacobi and Dirac-type operators, Math. Nachr., Volume 239 (2002), pp. 103-145

[15] Góman, C. On Lebesgue's density theorem, Proc. Amer. Math. Soc., Volume 1 (1950), pp. 384-388

[16] Krall, A. M.; E.Bairamov; Cakar, O. Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition, J. Differentional Equations, Volume 151 (1999), pp. 252-267

[17] Krall, A. M.; Bairamov, E.; Cakar, O. Spectral analysis of a non-selfadjoint discrete Schrödinger operators with spectral singularities, Math. Nachr., Volume 231 (2001), pp. 89-104

[18] Levitan, B. M. Inverse Sturm-Liouville problems, VSP, Zeist, 1987

[19] Lyance, V. E. A differential operator with spectral singularities I, II, Amer. Math. Soc. Transl., Amer. Math. Soc, Providence , Volume 60 (1967), pp. 185-225

[20] Marchenko, V. A. Sturm-Liouville operators and applications, Birkhauser Verlag, Basel, 1986

[21] Martin, N. F. G. A note on metric density of sets of real numbers, Proc. Amer. Math. Soc., Volume 11 (1960), pp. 344-347

[22] M. A. Naimark Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operators of second order on a semi-axis, Tr. Mosk. Mat. Obs., Volume 3 (1954), pp. 181-270

[23] Naimark, M. A. Linear differential operators II, Ungar, NewYork, NY, USA, 1968

[24] Olgun, M.; Coskun, C. Non-selfadjoint matrix Sturm-Liouville operators with spectral singularities, Appl. Math. Comput., Volume 216 (2010), pp. 2271-2275

[25] B. S. Pavlov On a non-selfadjoint Schrödinger operator II, Prob. Math. Phys., Volume 2 (1967), pp. 133-157

[26] Pavlov, B. S. On separation conditions for spectral components of a dissipative operator, Math. USSR-Izvestiya, Volume 39 (1975), pp. 123-148

Cité par Sources :