Voir la notice de l'article provenant de la source International Scientific Research Publications
$l(y) = -y'' + Q(x)y; \qquad x \in \mathbb{R}_+$ |
Katar, Deniz 1 ; Olgun, Murat 1 ; Coskun, Cafer 1
@article{JNSA_2016_9_2_a8, author = {Katar, Deniz and Olgun, Murat and Coskun, Cafer}, title = {Matrix {Sturm-Liouville} operators with boundary conditions dependent on the spectral parameter}, journal = {Journal of nonlinear sciences and its applications}, pages = {435-442}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2016}, doi = {10.22436/jnsa.009.02.09}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.09/} }
TY - JOUR AU - Katar, Deniz AU - Olgun, Murat AU - Coskun, Cafer TI - Matrix Sturm-Liouville operators with boundary conditions dependent on the spectral parameter JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 435 EP - 442 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.09/ DO - 10.22436/jnsa.009.02.09 LA - en ID - JNSA_2016_9_2_a8 ER -
%0 Journal Article %A Katar, Deniz %A Olgun, Murat %A Coskun, Cafer %T Matrix Sturm-Liouville operators with boundary conditions dependent on the spectral parameter %J Journal of nonlinear sciences and its applications %D 2016 %P 435-442 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.09/ %R 10.22436/jnsa.009.02.09 %G en %F JNSA_2016_9_2_a8
Katar, Deniz; Olgun, Murat; Coskun, Cafer. Matrix Sturm-Liouville operators with boundary conditions dependent on the spectral parameter. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 2, p. 435-442. doi : 10.22436/jnsa.009.02.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.09/
[1] Difference equations of second order with spectral singularities, J. Math. Anal. Appl., Volume 277 (2003), pp. 714-721
[2] The inverse problem of scattering theory, Gordon and Breach, New York, 1963
[3] Quadratic pencil of Schrödinger operators with spectral singularities: Discrete spectrum and principal functions, J. Math. Anal. Appl., Volume 216 (1997), pp. 303-320
[4] An eigenfunction expansion for a quadratic pencil of a Schrödinger operator with spectral singularities, J. Differential Equations, Volume 151 (1999), pp. 268-289
[5] Non-selfadjoint difference operators and Jacobi matrices with spectral singularities, Math. Nachr., Volume 229 (2001), pp. 5-14
[6] Spectrum and spectral expansion for the non-selfadjoint discrete Dirac operators, Quart. J. Math. Oxford Ser., Volume 50 (1999), pp. 371-384
[7] The structure of the spectrum a system of difference equations, Appl. Math. Lett., Volume 18 (2005), pp. 384-394
[8] Non-selfadjoint singular Sturm-Liouville problems with boundary conditions dependent on the eigenparameter, Abstr. Appl. Anal., Volume 2010 (2010), pp. 1-10
[9] Sets of uniqueness for functions regular in the unit circle, Acta Math., Volume 87 (1952), pp. 325-345
[10] An inverse problem for the matrix Schrödinger equation, J. Math. Anal. Appl., Volume 267 (2002), pp. 564-575
[11] Trace formulas and Borg-type theorems for matrix-valued Jacobi and Dirac finite difference operators, J. Differential Equations, Volume 219 (2005), pp. 144-182
[12] Principal functions of non-selfadjoint matrix Sturm-Liouville equations, J. Comput. Appl. Math., Volume 235 (2011), pp. 4834-4838
[13] Boundary value uniqueness theorems for analytic functions, Math. Notes, Volume 25 (1979), pp. 437-442
[14] Uniqueness results for matrix-valued Schrödinger, Jacobi and Dirac-type operators, Math. Nachr., Volume 239 (2002), pp. 103-145
[15] On Lebesgue's density theorem, Proc. Amer. Math. Soc., Volume 1 (1950), pp. 384-388
[16] Spectrum and spectral singularities of a quadratic pencil of a Schrödinger operator with a general boundary condition, J. Differentional Equations, Volume 151 (1999), pp. 252-267
[17] Spectral analysis of a non-selfadjoint discrete Schrödinger operators with spectral singularities, Math. Nachr., Volume 231 (2001), pp. 89-104
[18] Inverse Sturm-Liouville problems, VSP, Zeist, 1987
[19] A differential operator with spectral singularities I, II, Amer. Math. Soc. Transl., Amer. Math. Soc, Providence , Volume 60 (1967), pp. 185-225
[20] Sturm-Liouville operators and applications, Birkhauser Verlag, Basel, 1986
[21] A note on metric density of sets of real numbers, Proc. Amer. Math. Soc., Volume 11 (1960), pp. 344-347
[22] Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint operators of second order on a semi-axis, Tr. Mosk. Mat. Obs., Volume 3 (1954), pp. 181-270
[23] Linear differential operators II, Ungar, NewYork, NY, USA, 1968
[24] Non-selfadjoint matrix Sturm-Liouville operators with spectral singularities, Appl. Math. Comput., Volume 216 (2010), pp. 2271-2275
[25] On a non-selfadjoint Schrödinger operator II, Prob. Math. Phys., Volume 2 (1967), pp. 133-157
[26] On separation conditions for spectral components of a dissipative operator, Math. USSR-Izvestiya, Volume 39 (1975), pp. 123-148
Cité par Sources :