Voir la notice de l'article provenant de la source International Scientific Research Publications
Atangana, Abdon 1 ; Alkahtani, Badr Saad T. 2
@article{JNSA_2016_9_2_a7, author = {Atangana, Abdon and Alkahtani, Badr Saad T.}, title = {A novel double integral transform and its applications}, journal = {Journal of nonlinear sciences and its applications}, pages = {424-434}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2016}, doi = {10.22436/jnsa.009.02.08}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.08/} }
TY - JOUR AU - Atangana, Abdon AU - Alkahtani, Badr Saad T. TI - A novel double integral transform and its applications JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 424 EP - 434 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.08/ DO - 10.22436/jnsa.009.02.08 LA - en ID - JNSA_2016_9_2_a7 ER -
%0 Journal Article %A Atangana, Abdon %A Alkahtani, Badr Saad T. %T A novel double integral transform and its applications %J Journal of nonlinear sciences and its applications %D 2016 %P 424-434 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.08/ %R 10.22436/jnsa.009.02.08 %G en %F JNSA_2016_9_2_a7
Atangana, Abdon; Alkahtani, Badr Saad T. A novel double integral transform and its applications. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 2, p. 424-434. doi : 10.22436/jnsa.009.02.08. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.08/
[1] Numerical solution for the fractional replicator equation, Int. J. Mod. Phys. C, Volume 16 (2005), pp. 1017-1025
[2] Asymptotology, Ideas, Methods, and Applications, Kluwer Academic Publishers, Dordrecht, 2002
[3] A Note on the Triple Laplace Transform and Its Applications to Some Kind of Third order differential Equation, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-10
[4] Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations, Adv. Difference Equ., Volume 2013 (2013), pp. 1-14
[5] The Time-Fractional Coupled-Korteweg-de-Vries Equations, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-8
[6] Introduction to Asymptotic Methods, Chapman and Hall, CRC Press, Boca Raton, Chapman & Hall/CRC, Boca Raton, 2006
[7] A new perturbative approach to nonlinear problems, J. Math. Phys., Volume 30 (1989), pp. 1447-1455
[8] The Fourier Transform and Its Applications , (3rd ed.), McGraw-Hill, New York, 1986
[9] A Note on Double Laplace Transform and Telegraphic Equations, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-6
[10] Mellin transforms and asymptotics: Harmonic sums, Theoret. Comput. Sci., Volume 144 (1995), pp. 3-58
[11] Products of random variables: applications to problems of physics and to arithmetical functions, Marcel Dekker, Inc., New York, 2004
[12] Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006
[13] A collocation method based on one-dimensional RBF interpolation scheme for solving PDEs, Int. J. Numer. Methods Heat Fluid Flow, Volume 17 (2007), pp. 165-186
[14] Analytic homotopy solution of generalized three-dimensional channel flow due to uniform stretching of the plate, Acta Mech. Sin., Volume 23 (2007), pp. 503-510
[15] A new spectral-homotopy analysis method for solving a nonlinear second order BVP, Commun. Nonlinear Sci. Numer. Simul., Volume 15 (2010), pp. 2293-2302
[16] Order reduction of retarded nonlinear systems-the method of multiple scales versus centermanifold reduction, Nonlinear Dynam., Volume 51 (2008), pp. 483-500
[17] The modified differential transform method for solving MHD boundary-layer equations, Comput. Phys. Comm., Volume 180 (2009), pp. 2210-2217
[18] Transformation de Laplace des distributions, (in French), Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] (1952), pp. 196-206
[19] Homotopy analysis method for quadratic Riccati differential equation, Commun. Nonlinear Sci. Numer. Simul., Volume 13 (2008), pp. 539-546
[20] The relation between the lowering of the piezometric surface and the rate and duration of discharge of well using groundwater storage, Trans. Amer. Geophys. Union, Volume 16 (1935), pp. 519-524
[21] On the selection of auxiliary functions, operators, and convergence control parameters in the application of the homotopy analysis method to nonlinear differential equations: a general approach, Commun. Nonlinear Sci. Numer. Simul., Volume 14 (2009), pp. 4078-4089
[22] Sumudu transform: a new integral transform to solve differential equations and control engineering problems, Int. J. Math. Edu. Sci. Tech., Volume 24 (1993), pp. 35-43
[23] The 'Sumudu transform' and the Laplace transform - Reply, Int. J. Math. Edu. Sci. Tech., Volume 28 (1997), pp. 159-160
[24] Homotopy based solutions of the Navier-Stokes equations for a porous channel with orthogonally moving walls, Phys. Fluids, Volume 22 (2010), pp. 1-18
Cité par Sources :