Voir la notice de l'article provenant de la source International Scientific Research Publications
Lan, Yaoyao 1
@article{JNSA_2016_9_2_a5, author = {Lan, Yaoyao}, title = {Chaos in nonautonomous discrete fuzzy dynamical systems}, journal = {Journal of nonlinear sciences and its applications}, pages = {404-412}, publisher = {mathdoc}, volume = {9}, number = {2}, year = {2016}, doi = {10.22436/jnsa.009.02.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.06/} }
TY - JOUR AU - Lan, Yaoyao TI - Chaos in nonautonomous discrete fuzzy dynamical systems JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 404 EP - 412 VL - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.06/ DO - 10.22436/jnsa.009.02.06 LA - en ID - JNSA_2016_9_2_a5 ER -
%0 Journal Article %A Lan, Yaoyao %T Chaos in nonautonomous discrete fuzzy dynamical systems %J Journal of nonlinear sciences and its applications %D 2016 %P 404-412 %V 9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.06/ %R 10.22436/jnsa.009.02.06 %G en %F JNSA_2016_9_2_a5
Lan, Yaoyao. Chaos in nonautonomous discrete fuzzy dynamical systems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 2, p. 404-412. doi : 10.22436/jnsa.009.02.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.06/
[1] An extension of Sharkovsky's theorem to periodic difference equations, J. Math. Anal. Appl., Volume 316 (2006), pp. 128-141
[2] Approximation of attractors of nonautonomous dynamical systems, Discrete Contin. Dyn. Sys. Ser. B, Volume 5 (2005), pp. 215-238
[3] Weak mixing and chaos in nonautonomous discrete systems, Appl. Math. Lett., Volume 25 (2012), pp. 1135-1141
[4] On Devaney's definition of chaos, Amer. Math. Monthly, Volume 99 (1992), pp. 332-334
[5] Topological entropy of fuzzified dynamical systems, Fuzzy Sets and Systems, Volume 165 (2011), pp. 37-49
[6] Discrete dynamical systems in L-topological space, Fuzzy Sets and Systems, Volume 156 (2005), pp. 25-42
[7] An introduction to chaotic dynamical systems , 2nd ed., Addison Wesley, New York, 1989
[8] Time-varying Systems and Computations , Kluwer Academic Publishers, Boston, 1998
[9] Characterization of compact subsets of fuzzy sets, Fuzzy Sets and Systems, Volume 29 (1989), pp. 341-348
[10] Chaos in nonautonomous discrete dynamical systems, Commun. Nonlinear Sci. Numer. Simulat., Volume 17 (2012), pp. 4649-4652
[11] Global stability of periodic orbits of nonautonomous difference equations and population biology, J. Diff. Equations, Volume 208 (2005), pp. 258-273
[12] On chaotic set-valued discrete dynamical systems, Chaos Solitons Fractals, Volume 23 (2005), pp. 1381-1384
[13] On the convergence of fuzzy sets, Fuzzy Sets and Systems, Volume 17 (1985), pp. 53-65
[14] Chaotic properties on time varying map and its set valued extension, Adv. Pure Math., Volume 3 (2013), pp. 359-364
[15] Chaotic phenomena and nonautonomous dynamical system, Global J. Theor. Appl. Math. Sci., Volume 3 (2013), pp. 31-39
[16] Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam., Volume 4 (1996), pp. 205-223
[17] Some chaotic and mixing properties of Zadeh's Extension, IFSA/EUSFLAT Conf. (2009), pp. 589-594
[18] On Devaney chaotic induced fuzzy and set-valued dynamical systems, Fuzzy Sets and Systems, Volume 117 (2011), pp. 34-44
[19] On fuzzifications of discrete dynamical systems, Inform. Sci., Volume 181 (2011), pp. 2858-2872
[20] Some chaotic properties of discrete fuzzy dynamical systems, Abstr. Appl. Anal., Volume 2012 (2012), pp. 1-9
[21] Period three implies chaos, Amer. Math. Monthly, Volume 82 (1975), pp. 985-992
[22] Sensitivity of set-valued discrete systems, Nonlinear Anal., Volume 71 (2009), pp. 6122-6125
[23] Some chaotic properties of Zadeh's extension, Chaos Solitons Fractals, Volume 35 (2008), pp. 452-459
[24] On turbulent, erratic and other dynamical properties of Zadeh's extensions, Chaos, Solitons and Fractals, Volume 44 (2011), pp. 990-994
[25] Chaos in nonautonomous discrete dynamical systems approached by their subsystems, RFDP of Higher Education of China, Beijing, 2012
[26] Chaos of time-varying discrete dynamical systems, J. Differ. Equ. Appl., Volume 15 (2009), pp. 429-449
[27] On maps with dense orbits and the deffnition of chaos, Rocky. Mt. J. Math., Volume 22 (1992), pp. 353-375
[28] Chaos of a sequence of maps in a metric space, Chaos Solitons Fractals, Volume 28 (2006), pp. 1067-1075
[29] Dynamical systems over the space of upper semicontinuous fuzzy sets, Fuzzy Sets and Systems, Volume 209 (2012), pp. 89-103
Cité par Sources :