Some base spaces and core theorems of new type
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 2, p. 377-391.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we constructed two new base sequence spaces, denoted $rf$ and $rf_0$, and we investigated some of their important properties. Then, by using matrix domains, we defined other sequence spaces on these base spaces, called $zrf$ and $zrf_0$. Finally, we introduced the $B_\hat{R}$ core of a complex-valued sequence and we examined some inclusion theorems related to this new type of core.
DOI : 10.22436/jnsa.009.02.04
Classification : 40C05, 46A45, 40J05
Keywords: Almost convergence, base space, isomorphism, dual, matrix transformation, core theorem

Zararsiz, Zarife 1 ; Şengönül, Mehmet 1 ; Kayaduman, Kuddusi 2

1 Science and Art Faculty, Nevşehir Hacı Bektaş Veli University, 50300, Nevşehir, Turkey
2 Science and Art Faculty, G. Antep University, 27000, G. Antep, Turkey
@article{JNSA_2016_9_2_a3,
     author = {Zararsiz, Zarife and \c{S}eng\"on\"ul, Mehmet and Kayaduman, Kuddusi},
     title = {Some base spaces and core theorems of new type},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {377-391},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2016},
     doi = {10.22436/jnsa.009.02.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.04/}
}
TY  - JOUR
AU  - Zararsiz, Zarife
AU  - Şengönül, Mehmet
AU  - Kayaduman, Kuddusi
TI  - Some base spaces and core theorems of new type
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 377
EP  - 391
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.04/
DO  - 10.22436/jnsa.009.02.04
LA  - en
ID  - JNSA_2016_9_2_a3
ER  - 
%0 Journal Article
%A Zararsiz, Zarife
%A Şengönül, Mehmet
%A Kayaduman, Kuddusi
%T Some base spaces and core theorems of new type
%J Journal of nonlinear sciences and its applications
%D 2016
%P 377-391
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.04/
%R 10.22436/jnsa.009.02.04
%G en
%F JNSA_2016_9_2_a3
Zararsiz, Zarife; Şengönül, Mehmet; Kayaduman, Kuddusi. Some base spaces and core theorems of new type. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 2, p. 377-391. doi : 10.22436/jnsa.009.02.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.04/

[1] Altay, B. On the space of p- summable difference sequences of order \(m, (1 \leq p \leq \infty)\), Stud. Sci. Math. Hungar., Volume 43 (2006), pp. 387-402

[2] Altay, B.; Başar, F. On some Euler sequence spaces of non-absolute type, Ukrainian Math. J., Volume 57 (2005), pp. 1-17

[3] Altay, B.; Başar, F. Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., Volume 30 (2006), pp. 591-608

[4] Altay, B.; Başar, F. Some paranormed sequence spaces of non-absolute type derived by weighted mean, J. Math. Anal. Appl., Volume 319 (2006), pp. 494-508

[5] Altay, B.; F. Başar Generalization of the sequence space \(\ell_{(p)}\) derived by weighted mean, J. Math. Anal. Appl., Volume 330 (2007), pp. 174-185

[6] Altay, B.; Başar, F. The fine spectrum and the matrix domain of the difference operator \(\Delta\) on the sequence space \(\ell_p, (0 < p < 1)\), Commun. Math. Anal., Volume 2 (2007), pp. 1-11

[7] Altay, B.; F. Başar Certain topological properties and duals of the domain of a triangle matrix in a sequence space, J. Math. Anal. Appl., Volume 336 (2007), pp. 632-645

[8] S. Banach Théorie des opérations linéaires, , Warsawa, 1932

[9] Başar, F. Matrix transformations between certain sequence spaces of \(X_p\) and \(\ell_p\) , Soochow J. Math., Volume 26 (2000), pp. 191-204

[10] Başar, F. Summability theory and its applications, Bentham Science Publishers, , 2012

[11] Başarır, M. On some new sequence spaces and related matrix transformations, Indian J. Pure Appl. Math., Volume 26 (1995), pp. 1003-1010

[12] A. S. Besicovitch Almost periodic functions, Cambridge University Press, , 1954

[13] Bohr, H. Zur theorie der fastperiodischen funktionen I, Acta Math., Volume 46 (1925), pp. 101-214

[14] Boos, J. Classical and modern methods in summability, Oxford University Press, , 2000

[15] Butkovic, D.; Kraljevic, H.; N. Sarapa On the almost convergence, Functional Analysis II , Proceedings, Dubrovnik 1985, Lecture Notes in Math., Springer Verlag, Volume 1242 (1987), pp. 396-417

[16] Connor, J.; Fridy, J. A.; C. Orhan Core equality results for sequences, J. Math. Anal. Appl., Volume 321 (2006), pp. 515-523

[17] Cooke, R. G. Infinite matrices and sequence spaces , Macmillan & Co., Ltd., London, 1950

[18] Das, G. Sublinear functionals and a class of conservative matrices, Bull. Inst. Math. Acad. Sinica, Volume 15 (1987), pp. 89-106

[19] Fridy, J. A.; C. Orhan Statistical core theorems , J. Math. Anal. Appl., Volume 208 (1997), pp. 520-527

[20] Kamthan, P. K.; Gupta, M. Sequence spaces and series, Marcel Dekker Inc., New York, 1981

[21] Kantorovich, L. V.; G. P. Akilov Functional analysis in normed spaces, The Macmillan Co., New York, 1964

[22] Kirişci, M.; Başar, F. Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., Volume 60 (2010), pp. 1299-1309

[23] Lorentz, G. G. A contribution to the theory of divergent series, Acta Math., Volume 80 (1948), pp. 167-190

[24] Malkowsky, E. Recent results in the theory of matrix transformations in sequence spaces, Mat. Vesnik, Volume 49 (1997), pp. 187-196

[25] Malkowsky, E.; Savaş, E. Matrix transformations between sequence spaces of generalized weighted means , Appl. Math. Comput., Volume 147 (2004), pp. 333-345

[26] Ng, P. N.; Lee, P. Y. Cesàro sequence spaces of non-absolute type , Comment. Math. Prace Mat., Volume 20 (1978), pp. 429-433

[27] W. Orlicz Linear functional analysis, World Scientific, River Edge, NJ, 1992

[28] Petersen, G. M. Regular matrix transformations , McGraw-Hill Publishing Co., Ltd., London-New York-Toronto, 1966

[29] Polat, H.; Başar, F. Some Euler spaces of difference sequences of order m, Acta Math. Sci.Ser. B Engl. Ed., Volume 27 (2007), pp. 254-266

[30] Shcherbakov, A. A. Kernels of sequences of complex numbers and their regular transformations, Math. Not. Acad. Sci., Volume 22 (1977), pp. 948-953

[31] H. Steinhaus Quality control by sampling , Colloquium Math. , Volume 2 (1951), pp. 98-108

[32] Wang, C. S. On Nörlund sequence spaces, Tamkang J. Math., Volume 9 (1978), pp. 269-274

[33] Wilansky, A. Summability through functional analysis, Elsevier Science Publishers, Amsterdam, 1984

[34] Zararsız, Z. On the almost convergence, Doctoral Thesis , Nevşehir, 2015

Cité par Sources :