A study of some properties of an n-order functional inclusion
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 2, p. 350-356.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this paper is to study the solution set of the functional inclusion of n-th order of the following form:
$x(t) \in G(t; x(f_1(t)); ...; x(f_n(t))); t \in X;\quad (1)$
where the function $G: X\times Y^n\rightarrow P_{cl,cv}(Y)$ and $f_1; f_2; ...; f_n : X \rightarrow X$ are given. The approach is based on some fixed point theorems for multivalued operators, satisfying the nonlinear contraction condition, see [V. L. Lazăr, Fixed Point Theory Appl., 2011 (2011), 12 pages].
DOI : 10.22436/jnsa.009.02.01
Classification : 47H10, 54H25, 54C60
Keywords: Functional inclusion, multivalued weakly Picard operator, fixed point, \(\varphi\)-contraction, data dependence, well-posedness, Ulam-Hyers stability.

Lazăr, Tania Angelica 1 ; Lazăr, Vasile Lucian 2

1 Department of Mathematics, Technical University of Cluj-Napoca, Memorandumului St.28, 400114, Cluj-Napoca, Romania
2 The Faculty of Economics, Western University of Arad, Mihai Eminescu St.15, 310086, Arad, Romania
@article{JNSA_2016_9_2_a0,
     author = {Laz\u{a}r, Tania Angelica and Laz\u{a}r, Vasile Lucian},
     title = {A study of some properties of an n-order functional inclusion},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {350-356},
     publisher = {mathdoc},
     volume = {9},
     number = {2},
     year = {2016},
     doi = {10.22436/jnsa.009.02.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.01/}
}
TY  - JOUR
AU  - Lazăr, Tania Angelica
AU  - Lazăr, Vasile Lucian
TI  - A study of some properties of an n-order functional inclusion
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 350
EP  - 356
VL  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.01/
DO  - 10.22436/jnsa.009.02.01
LA  - en
ID  - JNSA_2016_9_2_a0
ER  - 
%0 Journal Article
%A Lazăr, Tania Angelica
%A Lazăr, Vasile Lucian
%T A study of some properties of an n-order functional inclusion
%J Journal of nonlinear sciences and its applications
%D 2016
%P 350-356
%V 9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.01/
%R 10.22436/jnsa.009.02.01
%G en
%F JNSA_2016_9_2_a0
Lazăr, Tania Angelica; Lazăr, Vasile Lucian. A study of some properties of an n-order functional inclusion. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 2, p. 350-356. doi : 10.22436/jnsa.009.02.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.02.01/

[1] Lazăr, V. L. Fixed point theory for multivalued \(\varphi\)-contractions , Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-12

[2] Petre, I. R. Fixed point theorems in E-b-metric spaces, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 264-271

[3] A. Petruşel Operatorial Inclusions, House of the Book of Science, Cluj-Napoca, 2002

[4] A. Petruşel Multivalued weakly Picard operators and applications, Scientiae Math. Jpn., Volume 59 (2004), pp. 167-202

[5] Petruşel, A.; I. A. Rus Multivalued Picard and weakly Picard operators, International Conference on Fixed Point Theory and Applications, Yokohama Publ., Yokohama (2004), pp. 207-226

[6] Petruşel, A.; Rus, I. A. The theory of a metric fixed point theorem for multivalued operators, In: L.J. Lin, A. Petruşel, H.K. Xu, Fixed Point Theory and its Applications, Yokohama Publ. (2010), pp. 161-175

[7] Petruşel, A.; Rus, I. A.; J. C. Yao Well-posedness in the generalized sense of the fixed point problems, Taiwan. J. Math., Volume 11 (2007), pp. 903-914

[8] R. Węgrzyk Fixed point theorems for multivalued functions and their applications to functional equations , Dissertationes Math. (Rozprawy Mat.), Volume 201 (1982), pp. 1-28

Cité par Sources :