On the extensions of the almost convergence idea and core theorems
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 1, p. 112-125.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The sequence spaces $rf$ and $rf_0$, more general and comprehensive than the almost convergent sequence spaces $f$ and $f_0$, were introduced by Zararsız and Şengönül in [Z. Zararsız, M. Şengönül, Doctoral Thesis, Nevşehir, (2015)]. The purpose of the present paper is to study the sequence spaces $brf$ and $brf_0$, that is, the sets of all sequences such that their $B(r; s)$ transforms are in $rf$ and $rf_0$ respectively. Furthermore, we determine the $\beta$- and $\gamma$- duals of brf, we show that there exists a linear isomorphic mapping between the spaces $rf$ and $brf$, and between $rf_0$ and $brf_0$ respectively, and provide some matrix characterizations of these spaces. Finally, we introduce the $B_{RB}$-core of a complex valued sequence and prove some theorems related to this new type of core.
DOI : 10.22436/jnsa.009.01.11
Classification : 40C05, 46A45, 40J05
Keywords: Almost convergence, \(\beta\)- and \(\gamma\)-duals, matrix domain of a sequence space, isomorphism, core theorem.

Zararsiz, Zarife 1

1 Department of Mathematics, Nevşehir Hacı Bektaş Veli University, 50300, Nevşehir, Turkey
@article{JNSA_2016_9_1_a10,
     author = {Zararsiz, Zarife},
     title = {On the extensions of the almost convergence idea and core theorems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {112-125},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2016},
     doi = {10.22436/jnsa.009.01.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.11/}
}
TY  - JOUR
AU  - Zararsiz, Zarife
TI  - On the extensions of the almost convergence idea and core theorems
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 112
EP  - 125
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.11/
DO  - 10.22436/jnsa.009.01.11
LA  - en
ID  - JNSA_2016_9_1_a10
ER  - 
%0 Journal Article
%A Zararsiz, Zarife
%T On the extensions of the almost convergence idea and core theorems
%J Journal of nonlinear sciences and its applications
%D 2016
%P 112-125
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.11/
%R 10.22436/jnsa.009.01.11
%G en
%F JNSA_2016_9_1_a10
Zararsiz, Zarife. On the extensions of the almost convergence idea and core theorems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 1, p. 112-125. doi : 10.22436/jnsa.009.01.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.11/

[1] Altay, B. On the space of p-summable difference sequences of order m, \((1 \leq p < \infty)\), Studia Sci. Math. Hungar., Volume 43 (2006), pp. 387-402 | DOI | Zbl

[2] Altay, B.; Başar, F. Some Euler sequence spaces of non-absolute type, Ukrainian Math. J., Volume 57 (2005), pp. 1-17

[3] Altay, B.; Başar, F. Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., Volume 30 (2006), pp. 591-608

[4] Altay, B.; Başar, F. Some paranormed sequence spaces of non-absolute type derived by weighted mean, J. Math. Anal. Appl., Volume 319 (2006), pp. 494-508 | DOI | Zbl

[5] Altay, B.; F. Başar Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl., Volume 336 (2007), pp. 632-645 | DOI | Zbl

[6] Altay, B.; F. Başar Generalization of the sequence space \(\ell(p)\) derived by weighted mean, J. Math. Anal. Appl., Volume 330 (2007), pp. 174-185 | Zbl | DOI

[7] Altay, B.; Başar, F. The fine spectrum and the matrix domain of the difference operator \(\Delta\) on the sequence space \(\ell_p, (0 < p < 1)\), Commun. Math. Anal., Volume 2 (2007), pp. 1-11 | Zbl

[8] Aydın, C.; Başar, F. On the new sequence spaces which include the spaces \(c_0\) and \(c\), Hokkaido Math. J., Volume 33 (2004), pp. 383-398 | DOI | Zbl

[9] Aydın, C.; F. Başar Some new paranormed sequence spaces, Inform. Sci., Volume 160 (2004), pp. 27-40 | DOI

[10] Başarır, M. On some new sequence spaces and related matrix transformations, Indian J. Pure Appl. Math., Volume 26 (1995), pp. 1003-1010

[11] Başar, F. Matrix transformations between certain sequence spaces of \(X_p\) and \(\ell_p\), Soochow J. Math., Volume 26 (2000), pp. 191-204 | Zbl

[12] F. Başar Summability theory and its applications, Bentham Science Publishers, Istanbul, 2011

[13] Başar, F.; Altay, B.; Mursaleen, M. Some generalizations of the space \(bv_p\) of p- bounded variation sequences, Nonlinear Anal., Volume 68 (2008), pp. 273-287 | Zbl | DOI

[14] Başar, F.; R. Çolak Almost-conservative matrix transformations, Doga Mat., Volume 13 (1989), pp. 91-100 | Zbl

[15] Başar, F.; Kirişçi, M. Almost convergence and generalized difference matrix, Comput. Math. Appl., Volume 61 (2011), pp. 602-611 | DOI

[16] Butkovic, D.; Kraljevic, H.; N. Sarapa On the almost convergence, Functional Analysis II, Dubrovnik 1985, Lecture Notes in Math. Springer Berlin, Volume 1242 (1987), pp. 396-417 | DOI

[17] M. Candan Domain of the double sequential band matrix in the classical sequence spaces, J. Inequal. Appl., Volume 2012 (2012), pp. 1-15 | DOI | Zbl

[18] Candan, M. Almost convergence and double sequential band matrix, Acta. Math. Sci., Volume 34 (2014), pp. 354-366 | DOI | Zbl

[19] Candan, M. Domain of the double sequential band matrix in the spaces of convergent and null sequences, Adv. Difference Equ., Volume 2014 (2014), pp. 1-18 | DOI

[20] Connor, J.; Fridy, J. A.; C. Orhan Core equality results for sequences, J. Math. Anal. Appl. , Volume 321 (2006), pp. 515-523 | DOI

[21] R. G. Cooke Infinite matrices and sequence spaces, Macmillan, London, 1950

[22] G. Das Sublinear functionals and a class of conservative matrices , Bull. Inst. Math. Acad. Sinica, Volume 15 (1987), pp. 89-106 | Zbl

[23] Fridy, J. A.; Orhan, C. Statistical core theorems, J. Math. Anal. Appl., Volume 208 (1997), pp. 520-527 | DOI

[24] Kirişçi, M.; Başar, F. Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., Volume 60 (2010), pp. 1299-1309 | Zbl | DOI

[25] Kuttner, B. On dual summability methods, Proc. Cambridge Philos. Soc., Volume 71 (1972), pp. 67-73 | DOI

[26] Lorentz, G. G. A contribution to the theory of divergent series , Acta Math., Volume 80 (1948), pp. 167-190

[27] Lorentz, G. G.; Zeller, K. Summation of sequences and summation of series, Proc. Amer. Math. Soc., Volume 15 (1964), pp. 743-746 | DOI

[28] Malkowsky, E. Recent results in the theory of matrix transformations in sequence spaces, 4th Symposium on Mathematical Analysis and Its Applications, Mat. Vesnik, Volume 49 (1997), pp. 187-196

[29] Malkowsky, E.; Mursaleen, M.; Suantai, S. The dual spaces of sets of difference sequences of order m and matrix transformations, Acta Math. Sin. Eng. Ser., Volume 23 (2007), pp. 521-532 | Zbl | DOI

[30] Malkowsky, E.; E. Savaş Matrix transformations between sequence spaces of generalized weighted means, Appl. Math. Comput., Volume 147 (2004), pp. 333-345 | DOI | Zbl

[31] Ng, P. N.; Lee, P. Y. Cesàro sequence spaces of non-absolute type, Comment. Math. Prace Mat., Volume 20 (1978), pp. 429-433

[32] Petersen, G. M. Regular matrix transformations, McGraw-Hill Publishing Company Limited, London, 1966

[33] Polat, H.; Başar, F. Some Euler spaces of difference sequences of order m, Acta Math. Sci., Volume 27 (2007), pp. 254-266 | DOI

[34] Şengönül, M.; F. Başar Some new Cesàro sequence spaces of non-absolute type which include the spaces \(c_0\) and \(c\) , Soochow J. Math., Volume 31 (2005), pp. 107-119 | Zbl

[35] A. A. Shcherbakov Kernels of sequences of complex numbers and their regular transformations, Math. Notes Acad. Sci. USSR, Volume 22 (1977), pp. 948-953 | Zbl | DOI

[36] Steinhaus, H. Quality control by sampling , Colloquium Math., Volume 2 (1951), pp. 98-108

[37] C. S. Wang On Nörlund sequence spaces, Tamkang J. Math., Volume 9 (1978), pp. 269-274

[38] Wilansky, A. Summability through functional analysis, North-Holland Publishing Co., Amsterdam, 1984

[39] Zararsız, Z.; M. Şengönül On the almost convergence, Doctoral Thesis, Nevşehir, 2015

Cité par Sources :