Voir la notice de l'article provenant de la source International Scientific Research Publications
Zararsiz, Zarife 1
@article{JNSA_2016_9_1_a10, author = {Zararsiz, Zarife}, title = {On the extensions of the almost convergence idea and core theorems}, journal = {Journal of nonlinear sciences and its applications}, pages = {112-125}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2016}, doi = {10.22436/jnsa.009.01.11}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.11/} }
TY - JOUR AU - Zararsiz, Zarife TI - On the extensions of the almost convergence idea and core theorems JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 112 EP - 125 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.11/ DO - 10.22436/jnsa.009.01.11 LA - en ID - JNSA_2016_9_1_a10 ER -
%0 Journal Article %A Zararsiz, Zarife %T On the extensions of the almost convergence idea and core theorems %J Journal of nonlinear sciences and its applications %D 2016 %P 112-125 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.11/ %R 10.22436/jnsa.009.01.11 %G en %F JNSA_2016_9_1_a10
Zararsiz, Zarife. On the extensions of the almost convergence idea and core theorems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 1, p. 112-125. doi : 10.22436/jnsa.009.01.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.11/
[1] On the space of p-summable difference sequences of order m, \((1 \leq p < \infty)\), Studia Sci. Math. Hungar., Volume 43 (2006), pp. 387-402 | DOI | Zbl
[2] Some Euler sequence spaces of non-absolute type, Ukrainian Math. J., Volume 57 (2005), pp. 1-17
[3] Some paranormed Riesz sequence spaces of non-absolute type, Southeast Asian Bull. Math., Volume 30 (2006), pp. 591-608
[4] Some paranormed sequence spaces of non-absolute type derived by weighted mean, J. Math. Anal. Appl., Volume 319 (2006), pp. 494-508 | DOI | Zbl
[5] Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl., Volume 336 (2007), pp. 632-645 | DOI | Zbl
[6] Generalization of the sequence space \(\ell(p)\) derived by weighted mean, J. Math. Anal. Appl., Volume 330 (2007), pp. 174-185 | Zbl | DOI
[7] The fine spectrum and the matrix domain of the difference operator \(\Delta\) on the sequence space \(\ell_p, (0 < p < 1)\), Commun. Math. Anal., Volume 2 (2007), pp. 1-11 | Zbl
[8] On the new sequence spaces which include the spaces \(c_0\) and \(c\), Hokkaido Math. J., Volume 33 (2004), pp. 383-398 | DOI | Zbl
[9] Some new paranormed sequence spaces, Inform. Sci., Volume 160 (2004), pp. 27-40 | DOI
[10] On some new sequence spaces and related matrix transformations, Indian J. Pure Appl. Math., Volume 26 (1995), pp. 1003-1010
[11] Matrix transformations between certain sequence spaces of \(X_p\) and \(\ell_p\), Soochow J. Math., Volume 26 (2000), pp. 191-204 | Zbl
[12] Summability theory and its applications, Bentham Science Publishers, Istanbul, 2011
[13] Some generalizations of the space \(bv_p\) of p- bounded variation sequences, Nonlinear Anal., Volume 68 (2008), pp. 273-287 | Zbl | DOI
[14] Almost-conservative matrix transformations, Doga Mat., Volume 13 (1989), pp. 91-100 | Zbl
[15] Almost convergence and generalized difference matrix, Comput. Math. Appl., Volume 61 (2011), pp. 602-611 | DOI
[16] On the almost convergence, Functional Analysis II, Dubrovnik 1985, Lecture Notes in Math. Springer Berlin, Volume 1242 (1987), pp. 396-417 | DOI
[17] Domain of the double sequential band matrix in the classical sequence spaces, J. Inequal. Appl., Volume 2012 (2012), pp. 1-15 | DOI | Zbl
[18] Almost convergence and double sequential band matrix, Acta. Math. Sci., Volume 34 (2014), pp. 354-366 | DOI | Zbl
[19] Domain of the double sequential band matrix in the spaces of convergent and null sequences, Adv. Difference Equ., Volume 2014 (2014), pp. 1-18 | DOI
[20] Core equality results for sequences, J. Math. Anal. Appl. , Volume 321 (2006), pp. 515-523 | DOI
[21] Infinite matrices and sequence spaces, Macmillan, London, 1950
[22] Sublinear functionals and a class of conservative matrices , Bull. Inst. Math. Acad. Sinica, Volume 15 (1987), pp. 89-106 | Zbl
[23] Statistical core theorems, J. Math. Anal. Appl., Volume 208 (1997), pp. 520-527 | DOI
[24] Some new sequence spaces derived by the domain of generalized difference matrix, Comput. Math. Appl., Volume 60 (2010), pp. 1299-1309 | Zbl | DOI
[25] On dual summability methods, Proc. Cambridge Philos. Soc., Volume 71 (1972), pp. 67-73 | DOI
[26] A contribution to the theory of divergent series , Acta Math., Volume 80 (1948), pp. 167-190
[27] Summation of sequences and summation of series, Proc. Amer. Math. Soc., Volume 15 (1964), pp. 743-746 | DOI
[28] Recent results in the theory of matrix transformations in sequence spaces, 4th Symposium on Mathematical Analysis and Its Applications, Mat. Vesnik, Volume 49 (1997), pp. 187-196
[29] The dual spaces of sets of difference sequences of order m and matrix transformations, Acta Math. Sin. Eng. Ser., Volume 23 (2007), pp. 521-532 | Zbl | DOI
[30] Matrix transformations between sequence spaces of generalized weighted means, Appl. Math. Comput., Volume 147 (2004), pp. 333-345 | DOI | Zbl
[31] Cesàro sequence spaces of non-absolute type, Comment. Math. Prace Mat., Volume 20 (1978), pp. 429-433
[32] Regular matrix transformations, McGraw-Hill Publishing Company Limited, London, 1966
[33] Some Euler spaces of difference sequences of order m, Acta Math. Sci., Volume 27 (2007), pp. 254-266 | DOI
[34] Some new Cesàro sequence spaces of non-absolute type which include the spaces \(c_0\) and \(c\) , Soochow J. Math., Volume 31 (2005), pp. 107-119 | Zbl
[35] Kernels of sequences of complex numbers and their regular transformations, Math. Notes Acad. Sci. USSR, Volume 22 (1977), pp. 948-953 | Zbl | DOI
[36] Quality control by sampling , Colloquium Math., Volume 2 (1951), pp. 98-108
[37] On Nörlund sequence spaces, Tamkang J. Math., Volume 9 (1978), pp. 269-274
[38] Summability through functional analysis, North-Holland Publishing Co., Amsterdam, 1984
[39] On the almost convergence, Doctoral Thesis, Nevşehir, 2015
Cité par Sources :