Center and pseudo-isochronous conditions in a quasi analytic system
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 1, p. 102-111.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The center conditions and pseudo-isochronous center conditions at origin or infinity in a class of non-analytic polynomial differential system are classified in this paper. By proper transforms, the quasi analytic system can be changed into an analytic system, and then the first 77 singular values and periodic constants are computed by Mathematics. Finally, we investigate the center conditions and pseudo-isochronous center conditions at infinity for the system. Especially, this system was investigated when $\lambda = 1$ in [Y. Wu, W. Huang, H. Dai, Qual. Theory Dyn. Syst., 10 (2011), 123{138].
DOI : 10.22436/jnsa.009.01.10
Classification : 34C05, 34C07
Keywords: Infinity, quasi analytic, center, pseudo-isochronicity.

Qingyu, Zheng 1 ; Hongwei, Li 1

1 School of Science, Linyi University, Linyi 276000, Shandong, China
@article{JNSA_2016_9_1_a9,
     author = {Qingyu, Zheng and Hongwei, Li},
     title = {Center and pseudo-isochronous conditions in a quasi analytic system},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {102-111},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2016},
     doi = {10.22436/jnsa.009.01.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.10/}
}
TY  - JOUR
AU  - Qingyu, Zheng
AU  - Hongwei, Li
TI  - Center and pseudo-isochronous conditions in a quasi analytic system
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 102
EP  - 111
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.10/
DO  - 10.22436/jnsa.009.01.10
LA  - en
ID  - JNSA_2016_9_1_a9
ER  - 
%0 Journal Article
%A Qingyu, Zheng
%A Hongwei, Li
%T Center and pseudo-isochronous conditions in a quasi analytic system
%J Journal of nonlinear sciences and its applications
%D 2016
%P 102-111
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.10/
%R 10.22436/jnsa.009.01.10
%G en
%F JNSA_2016_9_1_a9
Qingyu, Zheng; Hongwei, Li. Center and pseudo-isochronous conditions in a quasi analytic system. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 1, p. 102-111. doi : 10.22436/jnsa.009.01.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.10/

[1] A. K. Alomari A novel solution for fractional chaotic Chen system, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 478-488 | Zbl | DOI

[2] Blows, T. R.; Rousseau, C. Bifurcation at infinity in polynomial vector fields, J. Differential Equations, Volume 104 (1993), pp. 215-242 | DOI

[3] Gavrilov, L.; Iliev, I. D. Bifurcations of limit cycles from infinity in quadratic systems, Canad. J. Math., Volume 54 (2002), pp. 1038-1064 | Zbl | DOI

[4] Guinez, V.; Saez, E.; I. Szanto Simultaneous Hopf bifurcations at the origin and infinity for cubic systems, Pitman Res. Notes Math. Longman Sci. Tech. Harlow, Volume 285 (1993), pp. 40-51 | Zbl

[5] Hauer, B.; Engelhardt, A. P.; Taubner, T. Quasi-analytical model for scattering infrared near-field microscopy on layered systems, Optics Expr., Volume 20 (2012), pp. 13173-13188 | DOI

[6] Huang, W.; Y. Liu Bifurcations of limit cycles from infinity for a class of quintic polynomial system, Bull. sci. math., Volume 128 (2004), pp. 291-302 | DOI | Zbl

[7] Keith, W. L.; R. H. Rand Dynamics of a system exhibiting the global bifurcation of a limit cycle at infinity, Internat. J. Nonlinear Mech., Volume 20 (1985), pp. 325-338 | Zbl | DOI

[8] Y. Liu Theory of center-focus in a class of high order singular points and infinity, Sci. in China, Volume 31 (2001), pp. 37-48

[9] Liu, Y. Theory of center-focus for a class of higher-degree critical points and infinite points, Sci. China Ser. A, Volume 44 (2001), pp. 365-377 | Zbl | DOI

[10] Liu, Y. The generalized focal values and bifurcations of limit circles for quasi-quadratic system, Acta Math. Sinica, Volume 45 (2002), pp. 671-682

[11] Liu, Y.; H. Chen Stability and bifurcations of limit cycles of the equator in a class of cubic polynomial systems, Comput. Math. Appl., Volume 44 (2002), pp. 997-1005 | Zbl | DOI

[12] Liu, Y.; Chen, H. Formulas of singular point quantities and the first 10 saddle quantities for a class of cubic system, Acta Math. Appl. Sinica, Volume 25 (2002), pp. 295-302

[13] Liu, Y.; Huang, W. A new method to determine isochronous center conditions for polynomial differential systems, Bull. Sci. Math., Volume 127 (2003), pp. 133-148 | Zbl | DOI

[14] Li, H.; Y. Jin Two different distributions of limit cycles in a quintic system, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 255-266 | DOI | Zbl

[15] Liu, Y.; J. Li Theory of values of singular point in complex autonomous differential systems, Sci. China Ser. A, Volume 33 (1990), pp. 10-23 | Zbl

[16] Liu, Y.; J. Li Center and isochronous center problems for quasi analytic systems , Acta Math. Sin., Volume 24 (2008), pp. 1569-1582 | Zbl | DOI

[17] Liu, Y.; Li, J.; Huang, W. Singular point values,center problem and bifurcations of limit circles of two dimensional differential autonomous systems, Science press (2009), pp. 162-190

[18] Llibre, J.; C. Valls Classification of the centers, their cyclicity and isochronicity for a class of polynomial differential systems generalizing the linear systems with cubic homogeneous nonlinearities, J. Differential Equations, Volume 246 (2009), pp. 2192-2204 | DOI | Zbl

[19] Llibre, J.; Valls, C. Classification of the centers and isochronous centers for a class of quartic-like systems, Nonlinear Anal., Volume 71 (2009), pp. 3119-3128 | Zbl | DOI

[20] Llibre, J.; C. Valls Classification of the centers, their cyclicity and isochronicity for the generalized quadratic polynomial differential systems, J. Math. Anal. Appl., Volume 357 (2009), pp. 427-437 | Zbl | DOI

[21] Llibre, J.; Valls, C. Classification of the centers, of their cyclicity and isochronicity for two classes of generalized quintic polynomial differential systems, Nonlinear Differ. Equ. Appl., Volume 16 (2009), pp. 657-679 | Zbl | DOI

[22] L. Malaguti Soluzioni periodiche dellequazione di Lienard: biforcazione dall'infinito e non unicita, Rend. Istit. Mat. Univ. Trieste, Volume 19 (1987), pp. 12-31

[23] Musolino, A.; Rizzo, R.; E. Tripodi A quasi-analytical model for remote field eddy current inspection, Pro. Elec. Rese., Volume 26 (2012), pp. 237-249 | DOI

[24] Oerlemans, J. A quasi-analytical ice-sheet model for climate studies, Nonlinear Pro. Geop., Volume 10 (2003), pp. 441-452

[25] Sabatini, M. Bifurcation from infinity , Rend. Sem. Mat. Univ. Padova, Volume 78 (1987), pp. 237-253

[26] Sotomayor, J.; R. Paterlini Bifurcations of polynomial vector fields in the plane, oscillation, bifurcation and chaos , CMS Conf. Proc. 8, Amer. Math. Soc., Providence, RI (1987), pp. 665-685

[27] Wu, Y.; Huang, W.; H. Dai Isochronicity at infinity into a class of rational differential system, Qual. Theory Dyn. Syst., Volume 10 (2011), pp. 123-138 | DOI | Zbl

[28] P. Xiao Critical point quantities and integrability conditions for complex planar resonant polynomial differential systems, PhD. Thesis, Central south university, 2005

[29] Zhang, Q.; Liu, Y. A cubic polynomial system with seven limit cycles at infinity, Appl. Math. Comput., Volume 177 (2006), pp. 319-329 | Zbl | DOI

Cité par Sources :