Voir la notice de l'article provenant de la source International Scientific Research Publications
Qingyu, Zheng 1 ; Hongwei, Li 1
@article{JNSA_2016_9_1_a9, author = {Qingyu, Zheng and Hongwei, Li}, title = {Center and pseudo-isochronous conditions in a quasi analytic system}, journal = {Journal of nonlinear sciences and its applications}, pages = {102-111}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2016}, doi = {10.22436/jnsa.009.01.10}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.10/} }
TY - JOUR AU - Qingyu, Zheng AU - Hongwei, Li TI - Center and pseudo-isochronous conditions in a quasi analytic system JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 102 EP - 111 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.10/ DO - 10.22436/jnsa.009.01.10 LA - en ID - JNSA_2016_9_1_a9 ER -
%0 Journal Article %A Qingyu, Zheng %A Hongwei, Li %T Center and pseudo-isochronous conditions in a quasi analytic system %J Journal of nonlinear sciences and its applications %D 2016 %P 102-111 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.10/ %R 10.22436/jnsa.009.01.10 %G en %F JNSA_2016_9_1_a9
Qingyu, Zheng; Hongwei, Li. Center and pseudo-isochronous conditions in a quasi analytic system. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 1, p. 102-111. doi : 10.22436/jnsa.009.01.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.10/
[1] A novel solution for fractional chaotic Chen system, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 478-488 | Zbl | DOI
[2] Bifurcation at infinity in polynomial vector fields, J. Differential Equations, Volume 104 (1993), pp. 215-242 | DOI
[3] Bifurcations of limit cycles from infinity in quadratic systems, Canad. J. Math., Volume 54 (2002), pp. 1038-1064 | Zbl | DOI
[4] Simultaneous Hopf bifurcations at the origin and infinity for cubic systems, Pitman Res. Notes Math. Longman Sci. Tech. Harlow, Volume 285 (1993), pp. 40-51 | Zbl
[5] Quasi-analytical model for scattering infrared near-field microscopy on layered systems, Optics Expr., Volume 20 (2012), pp. 13173-13188 | DOI
[6] Bifurcations of limit cycles from infinity for a class of quintic polynomial system, Bull. sci. math., Volume 128 (2004), pp. 291-302 | DOI | Zbl
[7] Dynamics of a system exhibiting the global bifurcation of a limit cycle at infinity, Internat. J. Nonlinear Mech., Volume 20 (1985), pp. 325-338 | Zbl | DOI
[8] Theory of center-focus in a class of high order singular points and infinity, Sci. in China, Volume 31 (2001), pp. 37-48
[9] Theory of center-focus for a class of higher-degree critical points and infinite points, Sci. China Ser. A, Volume 44 (2001), pp. 365-377 | Zbl | DOI
[10] The generalized focal values and bifurcations of limit circles for quasi-quadratic system, Acta Math. Sinica, Volume 45 (2002), pp. 671-682
[11] Stability and bifurcations of limit cycles of the equator in a class of cubic polynomial systems, Comput. Math. Appl., Volume 44 (2002), pp. 997-1005 | Zbl | DOI
[12] Formulas of singular point quantities and the first 10 saddle quantities for a class of cubic system, Acta Math. Appl. Sinica, Volume 25 (2002), pp. 295-302
[13] A new method to determine isochronous center conditions for polynomial differential systems, Bull. Sci. Math., Volume 127 (2003), pp. 133-148 | Zbl | DOI
[14] Two different distributions of limit cycles in a quintic system, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 255-266 | DOI | Zbl
[15] Theory of values of singular point in complex autonomous differential systems, Sci. China Ser. A, Volume 33 (1990), pp. 10-23 | Zbl
[16] Center and isochronous center problems for quasi analytic systems , Acta Math. Sin., Volume 24 (2008), pp. 1569-1582 | Zbl | DOI
[17] Singular point values,center problem and bifurcations of limit circles of two dimensional differential autonomous systems, Science press (2009), pp. 162-190
[18] Classification of the centers, their cyclicity and isochronicity for a class of polynomial differential systems generalizing the linear systems with cubic homogeneous nonlinearities, J. Differential Equations, Volume 246 (2009), pp. 2192-2204 | DOI | Zbl
[19] Classification of the centers and isochronous centers for a class of quartic-like systems, Nonlinear Anal., Volume 71 (2009), pp. 3119-3128 | Zbl | DOI
[20] Classification of the centers, their cyclicity and isochronicity for the generalized quadratic polynomial differential systems, J. Math. Anal. Appl., Volume 357 (2009), pp. 427-437 | Zbl | DOI
[21] Classification of the centers, of their cyclicity and isochronicity for two classes of generalized quintic polynomial differential systems, Nonlinear Differ. Equ. Appl., Volume 16 (2009), pp. 657-679 | Zbl | DOI
[22] Soluzioni periodiche dellequazione di Lienard: biforcazione dall'infinito e non unicita, Rend. Istit. Mat. Univ. Trieste, Volume 19 (1987), pp. 12-31
[23] A quasi-analytical model for remote field eddy current inspection, Pro. Elec. Rese., Volume 26 (2012), pp. 237-249 | DOI
[24] A quasi-analytical ice-sheet model for climate studies, Nonlinear Pro. Geop., Volume 10 (2003), pp. 441-452
[25] Bifurcation from infinity , Rend. Sem. Mat. Univ. Padova, Volume 78 (1987), pp. 237-253
[26] Bifurcations of polynomial vector fields in the plane, oscillation, bifurcation and chaos , CMS Conf. Proc. 8, Amer. Math. Soc., Providence, RI (1987), pp. 665-685
[27] Isochronicity at infinity into a class of rational differential system, Qual. Theory Dyn. Syst., Volume 10 (2011), pp. 123-138 | DOI | Zbl
[28] Critical point quantities and integrability conditions for complex planar resonant polynomial differential systems, PhD. Thesis, Central south university, 2005
[29] A cubic polynomial system with seven limit cycles at infinity, Appl. Math. Comput., Volume 177 (2006), pp. 319-329 | Zbl | DOI
Cité par Sources :