Voir la notice de l'article provenant de la source International Scientific Research Publications
Liu, Yaqiang 1 ; Yao, Zhangsong 2 ; Liou, Yeong-Cheng 3 ; Zhu, Li-Jun 4
@article{JNSA_2016_9_1_a5, author = {Liu, Yaqiang and Yao, Zhangsong and Liou, Yeong-Cheng and Zhu, Li-Jun}, title = {Algorithms for the variational inequalities and fixed point problems}, journal = {Journal of nonlinear sciences and its applications}, pages = {61-74}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2016}, doi = {10.22436/jnsa.009.01.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.06/} }
TY - JOUR AU - Liu, Yaqiang AU - Yao, Zhangsong AU - Liou, Yeong-Cheng AU - Zhu, Li-Jun TI - Algorithms for the variational inequalities and fixed point problems JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 61 EP - 74 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.06/ DO - 10.22436/jnsa.009.01.06 LA - en ID - JNSA_2016_9_1_a5 ER -
%0 Journal Article %A Liu, Yaqiang %A Yao, Zhangsong %A Liou, Yeong-Cheng %A Zhu, Li-Jun %T Algorithms for the variational inequalities and fixed point problems %J Journal of nonlinear sciences and its applications %D 2016 %P 61-74 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.06/ %R 10.22436/jnsa.009.01.06 %G en %F JNSA_2016_9_1_a5
Liu, Yaqiang; Yao, Zhangsong; Liou, Yeong-Cheng; Zhu, Li-Jun. Algorithms for the variational inequalities and fixed point problems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 1, p. 61-74. doi : 10.22436/jnsa.009.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.06/
[1] Convergence of direct methods for paramonotone variational inequalities, Comput. Optim. Appl., Volume 46 (2010), pp. 247-263 | Zbl | DOI
[2] Proximal point algorithm controlled by a slowly vanishing term: applications to hierarchical minimization, SIAM J. Optim., Volume 15 (2005), pp. 555-572 | DOI | Zbl
[3] Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Methods Oper. Res., Volume 67 (2008), pp. 375-390 | DOI
[4] The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., Volume 148 (2011), pp. 318-335 | DOI
[5] A new method for solving a system of generalized nonlinear variational inequalities in Banach spaces, Appl. Math. Comput., Volume 217 (2011), pp. 6830-6837 | Zbl | DOI
[6] Regularization and iteration methods for a class of monotone variational inequalities , Taiwanese J. Math., Volume 13 (2009), pp. 739-752 | Zbl | DOI
[7] An approximate proximal-extragradient type method for monotone variational inequalities, J. Math. Anal. Appl., Volume 300 (2004), pp. 362-374 | DOI | Zbl
[8] An extragradient method for finding saddle points and for other problems, Èkonom. i Mat. Metody, Volume 12 (1976), pp. 747-756 | Zbl
[9] Visco-resolvent algorithms for monotone operators and nonexpansive mappings, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 325-344 | Zbl | DOI
[10] Hybrid methods for a class of monotone variational inequalities, Nonlinear Anal., Volume 71 (2009), pp. 1032-1041 | DOI
[11] Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., Volume 128 (2006), pp. 191-201 | DOI
[12] Some developments in general variational inequalities, Appl. Math. Comput., Volume 152 (2004), pp. 199-277 | DOI
[13] Strong convergence theorems of iterative scheme based on the extragradient method for mixed equilibrium problems and fixed point problems, Math. Comput. Modeling, Volume 49 (2009), pp. 1816-1828 | DOI
[14] Convexly constrained linear inverse problems: iterative least-squares and regularization, IEEE Trans. Signal Process., Volume 46 (1998), pp. 2345-2352 | Zbl | DOI
[15] On strong and \(\Delta\)-convergence of modified S-iteration for uniformly continuous total asymptotically nonexpansive mappings in CAT(\(\kappa\)) spaces, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 965-975 | Zbl | DOI
[16] Equivalence of variational inequalities with Wiener-Hopf equations, Proc. Amer. Math. Soc., Volume 111 (1991), pp. 339-346 | DOI
[17] Formes bilineaires coercitives sur les ensembles convexes, C.R. Acad. Sci. Paris, Volume 258 (1964), pp. 4413-4416 | Zbl
[18] Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., Volume 2005 (2005), pp. 103-123 | Zbl | DOI
[19] Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., Volume 118 (2003), pp. 417-428 | DOI
[20] On a new system of nonlinear variational inequalities and associated iterative algorithms, Math. Sci. Res. Hot-line, Volume 3 (1999), pp. 65-68 | Zbl
[21] Iterative algorithms and a new system of nonlinear quasivariational inequalities, Adv. Nonlinear Var. Inequal., Volume 4 (2001), pp. 117-124
[22] Approximation algorithm for fixed points of nonlinear operators and solutions of mixed equilibrium problems and variational inclusion problems with applications, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 475-494 | DOI | Zbl
[23] An iterative approach to quadratic optimization, J. Optimi. Theory Appl., Volume 116 (2003), pp. 659-678 | DOI
[24] A variable Krasnoselski-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, Volume 22 (2006), pp. 2021-2034 | DOI | Zbl
[25] Viscosity method for hierarchical fixed point approach to variational inequalities, Taiwanese J. Math., Volume 14 (2010), pp. 463-478 | DOI
[26] Convergence of hybrid steepest-descent methods for variational inequalities, J. Optim. Theory Appl., Volume 119 (2003), pp. 185-201 | DOI
[27] Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings, Numer. Funct. Anal. Optim., Volume 25 (2005), pp. 619-655 | Zbl | DOI
[28] A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems, Inverse Problems, Image Analysis, and Medical Imaging, Contemp. Math., Volume 313 (2002), pp. 269-305
[29] Variational inequalities with generalized monotone operators, Math. Oper. Res., Volume 19 (1994), pp. 691-705 | DOI
[30] Weak and strong convergence of Krasnoselski-Mann iteration for hierarchical fixed point problems, Inverse Problems, Volume 24 (2008), pp. 501-508 | Zbl | DOI
[31] An iterative algorithm for approximating convex minimization problem, Appl. Math. Comput., Volume 188 (2007), pp. 648-656 | DOI
[32] On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput., Volume 186 (2007), pp. 1551-1558 | DOI
[33] Iterative algorithms with perturbations for Lipschitz pseudocontractive mappings in Banach spaces, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 935-943 | DOI | Zbl
[34] Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwanese J. Math., Volume 10 (2006), pp. 1293-1303 | DOI
Cité par Sources :