Algorithms for the variational inequalities and fixed point problems
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 1, p. 61-74.

Voir la notice de l'article provenant de la source International Scientific Research Publications

A system of variational inequality and fixed point problems is considered. Two algorithms have been constructed. Our algorithms can find the minimum norm solution of this system of variational inequality and fixed point problems.
DOI : 10.22436/jnsa.009.01.06
Classification : 47H05, 47H10, 47H17
Keywords: Variational inequality, monotone mapping, nonexpansive mapping, fixed point, minimum norm.

Liu, Yaqiang 1 ; Yao, Zhangsong 2 ; Liou, Yeong-Cheng 3 ; Zhu, Li-Jun 4

1 School of Management, Tianjin Polytechnic University, Tianjin 300387, China
2 School of Information Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
3 Department of Information Management, Cheng Shiu University, Kaohsiung 833, Taiwan;Center for General Education, Kaohsiung Medical University, Kaohsiung 807, Taiwan
4 School of Mathematics and Information Science, Beifang University of Nationalities, Yinchuan 750021, China
@article{JNSA_2016_9_1_a5,
     author = {Liu, Yaqiang and Yao, Zhangsong and Liou, Yeong-Cheng and Zhu, Li-Jun},
     title = {Algorithms for the variational inequalities and fixed point problems},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {61-74},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2016},
     doi = {10.22436/jnsa.009.01.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.06/}
}
TY  - JOUR
AU  - Liu, Yaqiang
AU  - Yao, Zhangsong
AU  - Liou, Yeong-Cheng
AU  - Zhu, Li-Jun
TI  - Algorithms for the variational inequalities and fixed point problems
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 61
EP  - 74
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.06/
DO  - 10.22436/jnsa.009.01.06
LA  - en
ID  - JNSA_2016_9_1_a5
ER  - 
%0 Journal Article
%A Liu, Yaqiang
%A Yao, Zhangsong
%A Liou, Yeong-Cheng
%A Zhu, Li-Jun
%T Algorithms for the variational inequalities and fixed point problems
%J Journal of nonlinear sciences and its applications
%D 2016
%P 61-74
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.06/
%R 10.22436/jnsa.009.01.06
%G en
%F JNSA_2016_9_1_a5
Liu, Yaqiang; Yao, Zhangsong; Liou, Yeong-Cheng; Zhu, Li-Jun. Algorithms for the variational inequalities and fixed point problems. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 1, p. 61-74. doi : 10.22436/jnsa.009.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.06/

[1] Cruz, J. Y. Bello; Iusem, A. N. Convergence of direct methods for paramonotone variational inequalities, Comput. Optim. Appl., Volume 46 (2010), pp. 247-263 | Zbl | DOI

[2] A. Cabot Proximal point algorithm controlled by a slowly vanishing term: applications to hierarchical minimization, SIAM J. Optim., Volume 15 (2005), pp. 555-572 | DOI | Zbl

[3] Ceng, L. C.; Wang, C.; Yao, J. C. Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Methods Oper. Res., Volume 67 (2008), pp. 375-390 | DOI

[4] Censor, Y.; Gibali, A.; S. Reich The subgradient extragradient method for solving variational inequalities in Hilbert space, J. Optim. Theory Appl., Volume 148 (2011), pp. 318-335 | DOI

[5] Chang, S. S.; Lee, H. W. Joseph; Chan, C. K.; J. A. Liu A new method for solving a system of generalized nonlinear variational inequalities in Banach spaces, Appl. Math. Comput., Volume 217 (2011), pp. 6830-6837 | Zbl | DOI

[6] Chen, R.; Su, Y.; H. K. Xu Regularization and iteration methods for a class of monotone variational inequalities , Taiwanese J. Math., Volume 13 (2009), pp. 739-752 | Zbl | DOI

[7] He, B. S.; Yang, Z. H.; Yuan, X. M. An approximate proximal-extragradient type method for monotone variational inequalities, J. Math. Anal. Appl., Volume 300 (2004), pp. 362-374 | DOI | Zbl

[8] G. M. Korpelevich An extragradient method for finding saddle points and for other problems, Èkonom. i Mat. Metody, Volume 12 (1976), pp. 747-756 | Zbl

[9] Li, P.; Kang, S. M.; Zhu, L. J. Visco-resolvent algorithms for monotone operators and nonexpansive mappings, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 325-344 | Zbl | DOI

[10] Lu, X.; Xu, H. K.; Yin, X. Hybrid methods for a class of monotone variational inequalities, Nonlinear Anal., Volume 71 (2009), pp. 1032-1041 | DOI

[11] Nadezhkina, N.; Takahashi, W. Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., Volume 128 (2006), pp. 191-201 | DOI

[12] Noor, M. A. Some developments in general variational inequalities, Appl. Math. Comput., Volume 152 (2004), pp. 199-277 | DOI

[13] Peng, J. W.; Yao, J. C. Strong convergence theorems of iterative scheme based on the extragradient method for mixed equilibrium problems and fixed point problems, Math. Comput. Modeling, Volume 49 (2009), pp. 1816-1828 | DOI

[14] Sabharwal, A.; Potter, L. C. Convexly constrained linear inverse problems: iterative least-squares and regularization, IEEE Trans. Signal Process., Volume 46 (1998), pp. 2345-2352 | Zbl | DOI

[15] Saipara, P.; Chaipunya, P.; Cho, Y. J.; Kumam, P. On strong and \(\Delta\)-convergence of modified S-iteration for uniformly continuous total asymptotically nonexpansive mappings in CAT(\(\kappa\)) spaces, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 965-975 | Zbl | DOI

[16] P. Shi Equivalence of variational inequalities with Wiener-Hopf equations, Proc. Amer. Math. Soc., Volume 111 (1991), pp. 339-346 | DOI

[17] Stampacchia, G. Formes bilineaires coercitives sur les ensembles convexes, C.R. Acad. Sci. Paris, Volume 258 (1964), pp. 4413-4416 | Zbl

[18] Suzuki, T. Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., Volume 2005 (2005), pp. 103-123 | Zbl | DOI

[19] Takahashi, W.; Toyoda, M. Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., Volume 118 (2003), pp. 417-428 | DOI

[20] R. U. Verma On a new system of nonlinear variational inequalities and associated iterative algorithms, Math. Sci. Res. Hot-line, Volume 3 (1999), pp. 65-68 | Zbl

[21] R. U. Verma Iterative algorithms and a new system of nonlinear quasivariational inequalities, Adv. Nonlinear Var. Inequal., Volume 4 (2001), pp. 117-124

[22] Witthayarat, U.; Cho, Y. J.; P. Kumam Approximation algorithm for fixed points of nonlinear operators and solutions of mixed equilibrium problems and variational inclusion problems with applications, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 475-494 | DOI | Zbl

[23] H. K. Xu An iterative approach to quadratic optimization, J. Optimi. Theory Appl., Volume 116 (2003), pp. 659-678 | DOI

[24] Xu, H. K. A variable Krasnoselski-Mann algorithm and the multiple-set split feasibility problem, Inverse Problems, Volume 22 (2006), pp. 2021-2034 | DOI | Zbl

[25] Xu, H. K. Viscosity method for hierarchical fixed point approach to variational inequalities, Taiwanese J. Math., Volume 14 (2010), pp. 463-478 | DOI

[26] Xu, H. K.; Kim, T. H. Convergence of hybrid steepest-descent methods for variational inequalities, J. Optim. Theory Appl., Volume 119 (2003), pp. 185-201 | DOI

[27] Yamada, I.; Ogura, N. Hybrid steepest descent method for the variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings, Numer. Funct. Anal. Optim., Volume 25 (2005), pp. 619-655 | Zbl | DOI

[28] Yamada, I.; Ogura, N.; N. Shirakawa A numerically robust hybrid steepest descent method for the convexly constrained generalized inverse problems, Inverse Problems, Image Analysis, and Medical Imaging, Contemp. Math., Volume 313 (2002), pp. 269-305

[29] Yao, J. C. Variational inequalities with generalized monotone operators, Math. Oper. Res., Volume 19 (1994), pp. 691-705 | DOI

[30] Yao, Y.; Liou, Y. C. Weak and strong convergence of Krasnoselski-Mann iteration for hierarchical fixed point problems, Inverse Problems, Volume 24 (2008), pp. 501-508 | Zbl | DOI

[31] Yao, Y.; Liou, Y. C.; Yao, J. C. An iterative algorithm for approximating convex minimization problem, Appl. Math. Comput., Volume 188 (2007), pp. 648-656 | DOI

[32] Yao, Y.; J. C. Yao On modified iterative method for nonexpansive mappings and monotone mappings, Appl. Math. Comput., Volume 186 (2007), pp. 1551-1558 | DOI

[33] Yao, Z.; Zhu, L. J.; Kang, S. M.; Liou, Y. C. Iterative algorithms with perturbations for Lipschitz pseudocontractive mappings in Banach spaces, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 935-943 | DOI | Zbl

[34] Zeng, L. C.; Yao, J. C. Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwanese J. Math., Volume 10 (2006), pp. 1293-1303 | DOI

Cité par Sources :