Impulsive first-order functional $q_k$-integro-difference inclusions with boundary conditions
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 1, p. 46-60.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we discuss the existence of solutions for a first order boundary value problem for impulsive functional $q_k$-integro-difference inclusions. Some new existence results are obtained for convex as well as non-convex multivalued maps with the aid of some classical fixed point theorems. Illustrative examples are also presented.
DOI : 10.22436/jnsa.009.01.05
Classification : 34A60, 26A33, 39A13, 34A37
Keywords: \(q_k\)-derivative, \(q_k\)-integral, impulsive \(q_k\)-difference inclusions, existence, fixed point theorem.

Tariboon, Jessada 1 ; Ntouyas, Sotiris K. 2 ; Sudsutad, Weerawat 1

1 Nonlinear Dynamic Analysis Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand
2 Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece;Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
@article{JNSA_2016_9_1_a4,
     author = {Tariboon, Jessada and Ntouyas, Sotiris K. and Sudsutad, Weerawat},
     title = {Impulsive first-order functional \(q_k\)-integro-difference inclusions with boundary conditions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {46-60},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2016},
     doi = {10.22436/jnsa.009.01.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.05/}
}
TY  - JOUR
AU  - Tariboon, Jessada
AU  - Ntouyas, Sotiris K.
AU  - Sudsutad, Weerawat
TI  - Impulsive first-order functional \(q_k\)-integro-difference inclusions with boundary conditions
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 46
EP  - 60
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.05/
DO  - 10.22436/jnsa.009.01.05
LA  - en
ID  - JNSA_2016_9_1_a4
ER  - 
%0 Journal Article
%A Tariboon, Jessada
%A Ntouyas, Sotiris K.
%A Sudsutad, Weerawat
%T Impulsive first-order functional \(q_k\)-integro-difference inclusions with boundary conditions
%J Journal of nonlinear sciences and its applications
%D 2016
%P 46-60
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.05/
%R 10.22436/jnsa.009.01.05
%G en
%F JNSA_2016_9_1_a4
Tariboon, Jessada; Ntouyas, Sotiris K.; Sudsutad, Weerawat. Impulsive first-order functional \(q_k\)-integro-difference inclusions with boundary conditions. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 1, p. 46-60. doi : 10.22436/jnsa.009.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.05/

[1] Agarwal, R. P.; Zhou, Y.; Y. He Existence of fractional neutral functional differential equations, Comput. Math. Appl., Volume 59 (2010), pp. 1095-1100 | DOI

[2] Ahmad, B. Boundary-value problems for nonlinear third-order q-difference equations, Electron. J. Differential Equ., Volume 2011 (2011), pp. 1-7

[3] Ahmad, B.; Alsaedi, A.; S. K. Ntouyas A study of second-order q-difference equations with boundary conditions, Adv. Difference Equ., Volume 2012 (2012), pp. 1-10 | DOI | Zbl

[4] Ahmad, B.; J. J. Nieto Riemann-Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions, Bound. Value Probl., Volume 2011 (2011), pp. 1-9 | DOI

[5] Ahmad, B.; Nieto, J. J. On nonlocal boundary value problems of nonlinear q-difference equations , Adv. Difference Equ., Volume 2012 (2012), pp. 1-10 | DOI

[6] Ahmad, B.; Nieto, J. J. Boundary value problems for a class of sequential integrodifferential equations of fractional order, J. Funct. Spaces Appl., Volume 2013 (2013), pp. 1-8 | DOI | Zbl

[7] Ahmad, B.; Ntouyas, S. K. Boundary value problems for q-difference inclusions, Abstr. Appl. Anal., Volume 2011 (2011), pp. 1-15

[8] Ahmad, B.; Ntouyas, S. K.; A. Alsaedi New existence results for nonlinear fractional differential equations with three-point integral boundary conditions, Adv. Difference Equ., Volume 2011 (2011), pp. 1-11

[9] Ahmad, B.; Ntouyas, S. K.; Alsaedi, A. A study of nonlinear fractional differential equations of arbitrary order with Riemann-Liouville type multistrip boundary conditions, Math. Probl. Eng., Volume 2013 (2013), pp. 1-9 | Zbl

[10] Ahmad, B.; Ntouyas, S. K.; Purnaras, I. K. Existence results for nonlinear q-difference equations with nonlocal boundary conditions, Comm. Appl. Nonlinear Anal., Volume 19 (2012), pp. 59-72

[11] Băleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J. Fractional calculus models and numerical methods, Series on complexity, nonlinearity and chaos, World Scientific, Boston, 2012

[12] Băleanu, D.; Mustafa, O. G.; Agarwal, R. P. On \(L^p\)-solutions for a class of sequential fractional differential equations, Appl. Math. Comput., Volume 218 (2011), pp. 2074-2081 | DOI

[13] Benchohra, M.; Henderson, J.; Ntouyas, S. K. Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, New York, 2006 | DOI

[14] Bressan, A.; Colombo, G. Extensions and selections of maps with decomposable values, Studia Math., Volume 90 (1988), pp. 69-86 | DOI | EuDML | Zbl

[15] Castaing, C.; M. Valadier Convex analysis and measurable multifunctions , Lecture Notes in Mathematics 580, Springer-Verlag, New York, 1977

[16] Covitz, H.; Nadler, S. B. Multivalued contraction mappings in generalized metric spaces, Israel J. Math., Volume 8 (1970), pp. 5-11 | DOI

[17] Deimling, K. Multivalued differential equations, Walter De Gruyter, Berlin-New York, 1992

[18] El-Shahed, M.; H. A. Hassan Positive solutions of q-difference equation, Proc. Amer. Math. Soc., Volume 138 (2010), pp. 1733-1738 | DOI

[19] M. Frigon Théorémes d'existence de solutions d'inclusions différentielles, Topological methods in differential equations and inclusions (edited by A. Granas and M. Frigon), NATO ASI Series C, Kluwer Acad. Publ. Dordrecht, Volume 472 (1995), pp. 51-87 | DOI

[20] Granas, A.; J. Dugundji Fixed point theory, Springer-Verlag, New York, 2003

[21] Hu, S.; N. Papageorgiou Handbook of multivalued analysis, Theory I, Kluwer, Dordrecht, 1997

[22] Kac, V.; Cheung, P.; Quantum calculus, Springer, New York, 2002

[23] Kilbas, A. A.; Srivastava, H. M.; J. J. Trujillo Theory and applications of fractional differential equations, NorthHolland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006

[24] Kisielewicz, M. Differential inclusions and optimal control, Kluwer, Netherlands, 1991

[25] Lakshmikantham, V.; Bainov, D. D.; P. S. Simeonov Theory of impulsive differential equations, World Scientific, Teaneck, NJ, 1989

[26] Lasota, A.; Opial, Z. An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., Volume 13 (1965), pp. 781-786 | Zbl

[27] Liu, X.; Jia, M.; Ge, W. Multiple solutions of a p-Laplacian model involving a fractional derivative, Adv. Difference Equ., Volume 2013 (2013), pp. 1-12 | DOI

[28] O'Regan, D.; S. Staněk Fractional boundary value problems with singularities in space variables, Nonlinear Dynam., Volume 71 (2013), pp. 641-652 | Zbl | DOI

[29] Podlubny, I. Fractional differential equations, Academic Press, San Diego, 1998

[30] Samko, S. G.; Kilbas, A. A.; Marichev, O. I. Fractional integrals and derivatives, theory and applications, Gordon and Breach, Yverdon, 1993

[31] Samoilenko, A. M.; Perestyuk, N. A. Impulsive differential equations, World Scientific, Singapore, 1995

[32] Tariboon, J.; Ntouyas, S. K. Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Difference Equ., Volume 2013 (2013), pp. 1-19 | DOI

[33] Tariboon, J.; Ntouyas, S. K. Boundary value problem for first-order impulsive functional q-integrodifference equations, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-11

[34] Zhou, W.; Liu, H. Existence solutions for boundary value problem of nonlinear fractional q-difference equations, Adv. Difference Equ., Volume 2013 (2013), pp. 1-12 | DOI

Cité par Sources :