Voir la notice de l'article provenant de la source International Scientific Research Publications
Kumar, D. 1 ; Purohit, S. D. 2 ; Choi, J. 3
@article{JNSA_2016_9_1_a1, author = {Kumar, D. and Purohit, S. D. and Choi, J.}, title = {Generalized {Fractional} {Integrals} {Involving} {Product} of {Multivariable} {H-function} and a {General} {Class} of {Polynomials}}, journal = {Journal of nonlinear sciences and its applications}, pages = {8-21}, publisher = {mathdoc}, volume = {9}, number = {1}, year = {2016}, doi = {10.22436/jnsa.009.01.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.02/} }
TY - JOUR AU - Kumar, D. AU - Purohit, S. D. AU - Choi, J. TI - Generalized Fractional Integrals Involving Product of Multivariable H-function and a General Class of Polynomials JO - Journal of nonlinear sciences and its applications PY - 2016 SP - 8 EP - 21 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.02/ DO - 10.22436/jnsa.009.01.02 LA - en ID - JNSA_2016_9_1_a1 ER -
%0 Journal Article %A Kumar, D. %A Purohit, S. D. %A Choi, J. %T Generalized Fractional Integrals Involving Product of Multivariable H-function and a General Class of Polynomials %J Journal of nonlinear sciences and its applications %D 2016 %P 8-21 %V 9 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.02/ %R 10.22436/jnsa.009.01.02 %G en %F JNSA_2016_9_1_a1
Kumar, D.; Purohit, S. D.; Choi, J. Generalized Fractional Integrals Involving Product of Multivariable H-function and a General Class of Polynomials. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 1, p. 8-21. doi : 10.22436/jnsa.009.01.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.02/
[1] Further results on fractional calculus of Saigo operator, Appl. Appl. Math., Volume 7 (2012), pp. 585-594
[2] Extended Riemann-Liouville fractional derivative operator and its applications, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 451-466 | Zbl | DOI
[3] Certain fractional integral formulas involving the product of generalized Bessel functions, Sci. World J., Volume 2013 (2013), pp. 1-9
[4] Fractional calculus models and numerical methods, 3, Com- plexity, Nonlinearity and Chaos, World Scientific, 2012
[5] Generalized fractional integrals of product of two H-functions and a general class of polynomials, Int. J. Comput. Math., Volume 2015 (2015), pp. 1-13 | DOI | Zbl
[6] On the global existence of solutions to a class of fractional differential equations, Comput. Math. Appl., Volume 59 (2010), pp. 1835-1841 | DOI
[7] Certain unified fractional integrals and derivatives for a product of Aleph function and a general class of multivariable polynomials, J. Inequal. Appl., Volume 2014 (2014), pp. 1-15 | DOI
[8] Generalized fractional integration of the product of two H-functions, J. Rajasthan Acad. Phys. Sci., Volume 9 (2010), pp. 203-212 | Zbl
[9] Fractional calculus of the generalized Wright function, Fract. Calc. Appl. Anal., Volume 8 (2005), pp. 113-126 | EuDML
[10] H-Transforms, theory and applications , Chapman & Hall/CRC Press, Boca Raton, 2004 | Zbl
[11] Generalized fractional integration of Bessel function of first kind , Integral Transforms Spec. Funct., Volume 19 (2008), pp. 869-883 | DOI
[12] Generalized fractional integration of the \(\overline{H}\)-function involving general class of polynomials, Walailak J. Sci. Tech. (WJT), Volume 11 (2014), pp. 1019-1030
[13] Generalized fractional differentiation of the \(\overline{H}\) -function involving general class of polynomials, Int. J. Pure Appl. Sci. Technol., Volume 16 (2013), pp. 42-53
[14] Fractional calculus of the generalized Mittag-Leffler type function, Int. Scholarly Res. Notices, Volume 2014 (2014), pp. 1-5
[15] The H-function: theory and applications , Springer, New York, 2010 | DOI | Zbl
[16] Marichev-Saigo-Maeda fractional integration operators involving generalized Bessel functions, Math. Probl. Eng., Volume 2014 (2014), pp. 1-11 | Zbl
[17] A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., Volume 19 (1971), pp. 7-15 | Zbl
[18] Solutions of fractional partial differential equations of quantum mechanics, Adv. Appl. Math. Mech., Volume 5 (2013), pp. 639-651 | DOI
[19] On fractional partial differential equations related to quantum mechanics, J. Phys. A , Volume 44 (2011), pp. 1-8 | DOI
[20] Fractional integral operators and the multiindex Mittag-Leffler functions , Sci. Ser. A Math. Sci., Volume 21 (2011), pp. 87-96 | Zbl
[21] Marichev-Saigo-Maeda fractional integration operators of the Bessel function, Matematiche (Catania), Volume 67 (2012), pp. 21-32 | Zbl
[22] Generalized fractional integration involving Appell hypergeometric of the product of two H- functions, Vijnana Parishad Anusandhan Patrika, Volume 54 (2011), pp. 33-43
[23] Generalized fractional integration of the -function, J. Rajasthan Acad. Phys. Sci., Volume 10 (2011), pp. 373-382
[24] A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ., Volume 11 (1978), pp. 135-143 | Zbl
[25] More Generalization of Fractional calculus, Transform Methods and Special Functions, Varna, Bulgaria (1996), pp. 386-400 | DOI
[26] Fractional integration of the \(\overline{H}\) -function and a general class of polynomials via pathway operator, J. Indian Acad. Math., Volume 35 (2013), pp. 261-274 | Zbl
[27] Generalized fractional integration of the product of Bessel functions of the first kind, Proceedings of the 9th Annual Conference, Soc. Spec. Funct. Appl., Volume 9 (2011), pp. 15-27
[28] Fractional calculus of generalized Mittag-Leffler functions, J. Indian Acad. Math., Volume 31 (2009), pp. 165-172
[29] Generalized fractional calculus of the H-function associated with the Appell function F3, J. Fract. Calc., Volume 19 (2001), pp. 89-104
[30] A contour integral involving Fox's H-function, Indian J. Math., Volume 14 (1972), pp. 1-6
[31] A note on the convergence of Kampé de Fériet double hypergeometric series, Math. Nachr., Volume 53 (1972), pp. 151-159
[32] The H-functions of one and two variables with applications, South Asian Publishers, New Delhi/Madras, 1982
[33] Some expansion theorems and generating relations for the H-function of several complex variables I, Comment. Math. Univ. St. Paul., Volume 24 (1975), pp. 119-137
[34] Some expansion theorems and generating relations for the H-function of several complex variables II, Comment Math. Univ. St. Paul., Volume 25 (1976), pp. 167-197
[35] Operators of fractional integration and their applications, Appl. Math. Comput., Volume 118 (2001), pp. 1-52
[36] Some multidimensional fractional integral operators involving a general class of polynomials, J. Math. Anal. Appl., Volume 193 (1995), pp. 373-389
[37] The integration of certain product of the multivariable H-function with a general class of polynomials, Rend. Circ. Mat. Palermo, Volume 32 (1983), pp. 157-187
[38] Positive solutions for a class of q-fractional boundary value problems with p-Laplacian, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 442-450
Cité par Sources :