Generalized Fractional Integrals Involving Product of Multivariable H-function and a General Class of Polynomials
Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 1, p. 8-21.

Voir la notice de l'article provenant de la source International Scientific Research Publications

A large number of fractional integral formulas involving certain special functions and polynomials have been presented. Here, in this paper, we aim at establishing two fractional integral formulas involving the products of the multivariable H-function and a general class of polynomials by using generalized fractional integration operators given by Saigo and Maeda [M. Saigo, N. Maeda, Varna, Bulgaria, (1996), 386{400]. All the results derived here being of general character, they are seen to yield a number of results (known and new) regarding fractional integrals.
DOI : 10.22436/jnsa.009.01.02
Classification : 26A33, 33C45, 33C60, 33C70
Keywords: Generalized fractional integral operators, multivariable H-function, general class of polynomials, Mittag-Leffler function.

Kumar, D. 1 ; Purohit, S. D. 2 ; Choi, J. 3

1 Department of Mathematics and Statistics, Jai Narain Vyas University, Jodhpur-342005, India
2 Department of Mathematics, Rajasthan Technical University, Kota-324010, India
3 Department of Mathematics, Dongguk University, Gyeongju 780-714, Republic of Korea
@article{JNSA_2016_9_1_a1,
     author = {Kumar, D. and Purohit, S. D. and Choi, J.},
     title = {Generalized {Fractional} {Integrals} {Involving} {Product} of {Multivariable} {H-function} and a {General} {Class} of {Polynomials}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {8-21},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2016},
     doi = {10.22436/jnsa.009.01.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.02/}
}
TY  - JOUR
AU  - Kumar, D.
AU  - Purohit, S. D.
AU  - Choi, J.
TI  - Generalized Fractional Integrals Involving Product of Multivariable H-function and a General Class of Polynomials
JO  - Journal of nonlinear sciences and its applications
PY  - 2016
SP  - 8
EP  - 21
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.02/
DO  - 10.22436/jnsa.009.01.02
LA  - en
ID  - JNSA_2016_9_1_a1
ER  - 
%0 Journal Article
%A Kumar, D.
%A Purohit, S. D.
%A Choi, J.
%T Generalized Fractional Integrals Involving Product of Multivariable H-function and a General Class of Polynomials
%J Journal of nonlinear sciences and its applications
%D 2016
%P 8-21
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.02/
%R 10.22436/jnsa.009.01.02
%G en
%F JNSA_2016_9_1_a1
Kumar, D.; Purohit, S. D.; Choi, J. Generalized Fractional Integrals Involving Product of Multivariable H-function and a General Class of Polynomials. Journal of nonlinear sciences and its applications, Tome 9 (2016) no. 1, p. 8-21. doi : 10.22436/jnsa.009.01.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.009.01.02/

[1] Agarwal, P. Further results on fractional calculus of Saigo operator, Appl. Appl. Math., Volume 7 (2012), pp. 585-594

[2] Agarwal, P.; Choi, J.; R. B. Paris Extended Riemann-Liouville fractional derivative operator and its applications, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 451-466 | Zbl | DOI

[3] Baleanu, D.; Agarwal, P.; Purohit, S. D. Certain fractional integral formulas involving the product of generalized Bessel functions, Sci. World J., Volume 2013 (2013), pp. 1-9

[4] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J. Fractional calculus models and numerical methods, 3, Com- plexity, Nonlinearity and Chaos, World Scientific, 2012

[5] Baleanu, D.; Kumar, D.; S. D. Purohit Generalized fractional integrals of product of two H-functions and a general class of polynomials, Int. J. Comput. Math., Volume 2015 (2015), pp. 1-13 | DOI | Zbl

[6] Baleanu, D.; O. G. Mustafa On the global existence of solutions to a class of fractional differential equations, Comput. Math. Appl., Volume 59 (2010), pp. 1835-1841 | DOI

[7] Choi, J.; D. Kumar Certain unified fractional integrals and derivatives for a product of Aleph function and a general class of multivariable polynomials, J. Inequal. Appl., Volume 2014 (2014), pp. 1-15 | DOI

[8] Gupta, K. C.; Gupta, K.; Gupta, A. Generalized fractional integration of the product of two H-functions, J. Rajasthan Acad. Phys. Sci., Volume 9 (2010), pp. 203-212 | Zbl

[9] Kilbas, A. A. Fractional calculus of the generalized Wright function, Fract. Calc. Appl. Anal., Volume 8 (2005), pp. 113-126 | EuDML

[10] Kilbas, A. A.; Saigo, M. H-Transforms, theory and applications , Chapman & Hall/CRC Press, Boca Raton, 2004 | Zbl

[11] Kilbas, A. A.; Sebastain, N. Generalized fractional integration of Bessel function of first kind , Integral Transforms Spec. Funct., Volume 19 (2008), pp. 869-883 | DOI

[12] Kumar, D.; Agarwal, P.; S. D. Purohit Generalized fractional integration of the \(\overline{H}\)-function involving general class of polynomials, Walailak J. Sci. Tech. (WJT), Volume 11 (2014), pp. 1019-1030

[13] Kumar, D.; Daiya, J. Generalized fractional differentiation of the \(\overline{H}\) -function involving general class of polynomials, Int. J. Pure Appl. Sci. Technol., Volume 16 (2013), pp. 42-53

[14] Kumar, D.; Kumar, S. Fractional calculus of the generalized Mittag-Leffler type function, Int. Scholarly Res. Notices, Volume 2014 (2014), pp. 1-5

[15] Mathai, A. M.; Saxena, R. K.; Haubold, H. J. The H-function: theory and applications , Springer, New York, 2010 | DOI | Zbl

[16] Mondal, S. R.; Nisar, K. S. Marichev-Saigo-Maeda fractional integration operators involving generalized Bessel functions, Math. Probl. Eng., Volume 2014 (2014), pp. 1-11 | Zbl

[17] T. R. Prabhakar A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., Volume 19 (1971), pp. 7-15 | Zbl

[18] S. D. Purohit Solutions of fractional partial differential equations of quantum mechanics, Adv. Appl. Math. Mech., Volume 5 (2013), pp. 639-651 | DOI

[19] Purohit, S. D.; Kalla, S. L. On fractional partial differential equations related to quantum mechanics, J. Phys. A , Volume 44 (2011), pp. 1-8 | DOI

[20] Purohit, S. D.; Kalla, S. L.; D. L. Suthar Fractional integral operators and the multiindex Mittag-Leffler functions , Sci. Ser. A Math. Sci., Volume 21 (2011), pp. 87-96 | Zbl

[21] Purohit, S. D.; Suthar, D. L.; S. L. Kalla Marichev-Saigo-Maeda fractional integration operators of the Bessel function, Matematiche (Catania), Volume 67 (2012), pp. 21-32 | Zbl

[22] Ram, J.; Kumar, D. Generalized fractional integration involving Appell hypergeometric of the product of two H- functions, Vijnana Parishad Anusandhan Patrika, Volume 54 (2011), pp. 33-43

[23] Ram, J.; D. Kumar Generalized fractional integration of the -function, J. Rajasthan Acad. Phys. Sci., Volume 10 (2011), pp. 373-382

[24] Saigo, M. A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ., Volume 11 (1978), pp. 135-143 | Zbl

[25] Saigo, M.; Maeda, N. More Generalization of Fractional calculus, Transform Methods and Special Functions, Varna, Bulgaria (1996), pp. 386-400 | DOI

[26] Saxena, R. K.; Daiya, J.; Kumar, D. Fractional integration of the \(\overline{H}\) -function and a general class of polynomials via pathway operator, J. Indian Acad. Math., Volume 35 (2013), pp. 261-274 | Zbl

[27] Saxena, R. K.; Ram, J.; Kumar, D. Generalized fractional integration of the product of Bessel functions of the first kind, Proceedings of the 9th Annual Conference, Soc. Spec. Funct. Appl., Volume 9 (2011), pp. 15-27

[28] Saxena, R. K.; Ram, J.; Suthar, D. L. Fractional calculus of generalized Mittag-Leffler functions, J. Indian Acad. Math., Volume 31 (2009), pp. 165-172

[29] Saxena, R. K.; Saigo, M. Generalized fractional calculus of the H-function associated with the Appell function F3, J. Fract. Calc., Volume 19 (2001), pp. 89-104

[30] Srivastava, H. M. A contour integral involving Fox's H-function, Indian J. Math., Volume 14 (1972), pp. 1-6

[31] Srivastava, H. M.; Daoust, M. C. A note on the convergence of Kampé de Fériet double hypergeometric series, Math. Nachr., Volume 53 (1972), pp. 151-159

[32] Srivastava, H. M.; Gupta, K. C.; S. P. Goyal The H-functions of one and two variables with applications, South Asian Publishers, New Delhi/Madras, 1982

[33] Srivastava, H. M.; Panda, R. Some expansion theorems and generating relations for the H-function of several complex variables I, Comment. Math. Univ. St. Paul., Volume 24 (1975), pp. 119-137

[34] Srivastava, H. M.; Panda, R. Some expansion theorems and generating relations for the H-function of several complex variables II, Comment Math. Univ. St. Paul., Volume 25 (1976), pp. 167-197

[35] Srivastava, H. M.; Saxena, R. K. Operators of fractional integration and their applications, Appl. Math. Comput., Volume 118 (2001), pp. 1-52

[36] Srivastava, H. M.; Saxena, R. K.; J. Ram Some multidimensional fractional integral operators involving a general class of polynomials, J. Math. Anal. Appl., Volume 193 (1995), pp. 373-389

[37] Srivastava, H. M.; N. P. Singh The integration of certain product of the multivariable H-function with a general class of polynomials, Rend. Circ. Mat. Palermo, Volume 32 (1983), pp. 157-187

[38] Zhao, J. Positive solutions for a class of q-fractional boundary value problems with p-Laplacian, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 442-450

Cité par Sources :