Voir la notice de l'article provenant de la source International Scientific Research Publications
Ege, Ozgur 1
@article{JNSA_2015_8_6_a11, author = {Ege, Ozgur}, title = {Complex valued rectangular b-metric spaces and an application to linear equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {1014-1021}, publisher = {mathdoc}, volume = {8}, number = {6}, year = {2015}, doi = {10.22436/jnsa.008.06.12}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.12/} }
TY - JOUR AU - Ege, Ozgur TI - Complex valued rectangular b-metric spaces and an application to linear equations JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 1014 EP - 1021 VL - 8 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.12/ DO - 10.22436/jnsa.008.06.12 LA - en ID - JNSA_2015_8_6_a11 ER -
%0 Journal Article %A Ege, Ozgur %T Complex valued rectangular b-metric spaces and an application to linear equations %J Journal of nonlinear sciences and its applications %D 2015 %P 1014-1021 %V 8 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.12/ %R 10.22436/jnsa.008.06.12 %G en %F JNSA_2015_8_6_a11
Ege, Ozgur. Complex valued rectangular b-metric spaces and an application to linear equations. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 6, p. 1014-1021. doi : 10.22436/jnsa.008.06.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.12/
[1] Common fixed point results for contractive mappings in complex valued metric spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-11
[2] Some common fixed point results in rectangular metric spaces, Int. J. Anal., Volume 2013 (2013), pp. 1-7
[3] Kannan fixed point theorems on generalized metric spaces, J. Nonlinear Sci. Appl., Volume 1 (2008), pp. 45-48
[4] Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math., Volume 3 (2009), pp. 236-241
[5] Common fixed point theorems in complex valued metric spaces, Number. Funct. Anal. Optim., Volume 32 (2011), pp. 243-253
[6] The contraction mapping principle in quasimetric spaces, Funct. Anal., Volume 30 (1989), pp. 26-37
[7] Common fixed point of mappings satisfying rational inequality in complex valued metric space, Int. J. Pure Appl. Math., Volume 73 (2011), pp. 159-164
[8] Multivalued fractals in b-metric spaces , Cent. Eur. J. Math., Volume 8 (2010), pp. 367-377
[9] A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces , Publ. Math. Debrecen, Volume 57 (2000), pp. 31-37
[10] Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11
[11] Nonlinear set-valued contraction mappings in b-metric spaces , Atti Sem. Mat. Univ. Modena, Volume 46 (1998), pp. 263-276
[12] On some new fixed point results in b-rectangular metric spaces, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 378-386
[13] Banach fixed point theorem for digital images, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 237-245
[14] Complex valued \(G_b\)-metric spaces, preprint, , 2015
[15] Some fixed point theorems in complex valued Gb-metric spaces, preprint, , 2015
[16] Fixed points of ( \(\psi,\phi\))-contractions on generalized metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-12
[17] Sur quelques points du calcul fonctionnel , Rendiconti del Circolo Matematico di Palermo, Volume 22 (1906), pp. 1-72
[18] Common fixed point results for \(\psi-\phi\) contractions in rectangular metric spaces, Bull. Math. Anal. Appl., Volume 5 (2013), pp. 44-52
[19] Rectangular b-metric spaces and contraction principle, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 1005-1013
[20] Fixed points for ( \(\psi,\phi\))-weakly contractive mapping in generalized metric spaces, Appl. Math. Lett., Volume 25 (2012), pp. 902-906
[21] Some common fixed point theorems in complex valued b-metric spaces, Sci. World J., Volume 2014 (2014), pp. 1-6
[22] Existence of tripled coincidence points in ordered b-metric spaces and an application to a system of integral equations, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-19
[23] A common fixed point theorem in complex valued b-metric spaces, Bull. Math. Stat. Res., Volume 1 (2013), pp. 1-8
[24] Some common fixed point theorems on complex valued metric spaces, Comput. Math. Appl., Volume 64 (2012), pp. 1866-1874
[25] Partial rectangular metric spaces and fixed point theorems, Sci. World J., Volume 2014 (2014), pp. 1-7
[26] Generalized common fixed point theorems in complex valued metric spaces and applications, J. Inequal. Appl., Volume 2012 (2012), pp. 1-12
Cité par Sources :