Complex valued rectangular b-metric spaces and an application to linear equations
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 6, p. 1014-1021.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce complex valued rectangular b-metric spaces. We prove an analogue of Banach contraction principle. We also prove a different contraction principle with a new condition and a fixed point theorem in this space. Finally, we give an application of Banach contraction principle to linear equations.
DOI : 10.22436/jnsa.008.06.12
Classification : 47H10, 54E35, 54H25
Keywords: Fixed point, Banach contraction principle, rectangular b-metric space.

Ege, Ozgur 1

1 Department of Mathematics, Celal Bayar University, Muradiye, 45140, Manisa, Turkey
@article{JNSA_2015_8_6_a11,
     author = {Ege, Ozgur},
     title = {Complex valued rectangular b-metric spaces and an application to linear equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1014-1021},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {2015},
     doi = {10.22436/jnsa.008.06.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.12/}
}
TY  - JOUR
AU  - Ege, Ozgur
TI  - Complex valued rectangular b-metric spaces and an application to linear equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 1014
EP  - 1021
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.12/
DO  - 10.22436/jnsa.008.06.12
LA  - en
ID  - JNSA_2015_8_6_a11
ER  - 
%0 Journal Article
%A Ege, Ozgur
%T Complex valued rectangular b-metric spaces and an application to linear equations
%J Journal of nonlinear sciences and its applications
%D 2015
%P 1014-1021
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.12/
%R 10.22436/jnsa.008.06.12
%G en
%F JNSA_2015_8_6_a11
Ege, Ozgur. Complex valued rectangular b-metric spaces and an application to linear equations. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 6, p. 1014-1021. doi : 10.22436/jnsa.008.06.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.12/

[1] Ahmad, J.; Azam, A.; Saejung, S. Common fixed point results for contractive mappings in complex valued metric spaces, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-11

[2] Arshad, M.; Ahmad, J.; Karapinar, E. Some common fixed point results in rectangular metric spaces, Int. J. Anal., Volume 2013 (2013), pp. 1-7

[3] Azam, A.; Arshad, M. Kannan fixed point theorems on generalized metric spaces, J. Nonlinear Sci. Appl., Volume 1 (2008), pp. 45-48

[4] Azam, A.; Arshad, M.; Beg, I. Banach contraction principle on cone rectangular metric spaces, Appl. Anal. Discrete Math., Volume 3 (2009), pp. 236-241

[5] Azam, A.; Khan, B. Fisher M. Common fixed point theorems in complex valued metric spaces, Number. Funct. Anal. Optim., Volume 32 (2011), pp. 243-253

[6] Bakhtin, I. A. The contraction mapping principle in quasimetric spaces, Funct. Anal., Volume 30 (1989), pp. 26-37

[7] Bhatt, S.; Chaukiyal, S.; R. C. Dimri Common fixed point of mappings satisfying rational inequality in complex valued metric space, Int. J. Pure Appl. Math., Volume 73 (2011), pp. 159-164

[8] Boriceanu, M.; Bota, M.; A. Petrusel Multivalued fractals in b-metric spaces , Cent. Eur. J. Math., Volume 8 (2010), pp. 367-377

[9] A. Branciari A fixed point theorem of Banach-Caccippoli type on a class of generalized metric spaces , Publ. Math. Debrecen, Volume 57 (2000), pp. 31-37

[10] Czerwik, S. Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11

[11] S. Czerwik Nonlinear set-valued contraction mappings in b-metric spaces , Atti Sem. Mat. Univ. Modena, Volume 46 (1998), pp. 263-276

[12] Ding, H.; Ozturk, V.; Radenovic, S. On some new fixed point results in b-rectangular metric spaces, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 378-386

[13] Ege, O.; Karaca, I. Banach fixed point theorem for digital images, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 237-245

[14] Ege, O. Complex valued \(G_b\)-metric spaces, preprint, , 2015

[15] Ege, O. Some fixed point theorems in complex valued Gb-metric spaces, preprint, , 2015

[16] Erhan, I. M.; Karapinar, E.; Sekulic, T. Fixed points of ( \(\psi,\phi\))-contractions on generalized metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-12

[17] Frechet, M. Sur quelques points du calcul fonctionnel , Rendiconti del Circolo Matematico di Palermo, Volume 22 (1906), pp. 1-72

[18] George, R.; Rajagopalan, R. Common fixed point results for \(\psi-\phi\) contractions in rectangular metric spaces, Bull. Math. Anal. Appl., Volume 5 (2013), pp. 44-52

[19] George, R.; Radenovic, S.; Reshma, K. P.; Shukla, S. Rectangular b-metric spaces and contraction principle, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 1005-1013

[20] Lakzian, H.; Samet, B. Fixed points for ( \(\psi,\phi\))-weakly contractive mapping in generalized metric spaces, Appl. Math. Lett., Volume 25 (2012), pp. 902-906

[21] A. A. Mukheimer Some common fixed point theorems in complex valued b-metric spaces, Sci. World J., Volume 2014 (2014), pp. 1-6

[22] Parvaneh, V.; Roshan, J. R.; Radenovic, S. Existence of tripled coincidence points in ordered b-metric spaces and an application to a system of integral equations, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-19

[23] Rao, K. P. R.; Swamy, P. R.; J. R. Prasad A common fixed point theorem in complex valued b-metric spaces, Bull. Math. Stat. Res., Volume 1 (2013), pp. 1-8

[24] Rouzkard, F.; Imdad, M. Some common fixed point theorems on complex valued metric spaces, Comput. Math. Appl., Volume 64 (2012), pp. 1866-1874

[25] Shukla, S. Partial rectangular metric spaces and fixed point theorems, Sci. World J., Volume 2014 (2014), pp. 1-7

[26] Sintunavarat, W.; Kumam, P. Generalized common fixed point theorems in complex valued metric spaces and applications, J. Inequal. Appl., Volume 2012 (2012), pp. 1-12

Cité par Sources :