On certain Euler difference sequence spaces of fractional order and related dual properties
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 6, p. 997-1004.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this paper is to generalize the Euler sequences of nonabsolute type by introducing a generalized Euler mean difference operator $E^r(\Delta^{(\tilde{\alpha})})$ of order $\alpha$. We investigate their topological structures as well as some interesting results concerning the operator $E^r(\Delta^{(\tilde{\alpha})})$ for a proper fraction $\tilde{\alpha}$. Also we obtain the $\alpha$-, $\beta$- and $\gamma$-duals of these sets.
DOI : 10.22436/jnsa.008.06.10
Classification : 46A45, 46A35, 46B45
Keywords: Euler sequence spaces of nonabsolute type, linear operator, matrix transformations, \(\alpha\)-, \(\beta\)- and \(\gamma\)-duals.

Kadak, Ugur 1 ; Baliarsingh, P. 2

1 Department of Mathematics, Bozok University, 66100 Yozgat, Turkey
2 Department of Mathematics, School of Applied Sciences, KIIT University, India
@article{JNSA_2015_8_6_a9,
     author = {Kadak, Ugur and Baliarsingh, P.},
     title = {On certain {Euler} difference sequence spaces of fractional order and related dual properties},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {997-1004},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {2015},
     doi = {10.22436/jnsa.008.06.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.10/}
}
TY  - JOUR
AU  - Kadak, Ugur
AU  - Baliarsingh, P.
TI  - On certain Euler difference sequence spaces of fractional order and related dual properties
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 997
EP  - 1004
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.10/
DO  - 10.22436/jnsa.008.06.10
LA  - en
ID  - JNSA_2015_8_6_a9
ER  - 
%0 Journal Article
%A Kadak, Ugur
%A Baliarsingh, P.
%T On certain Euler difference sequence spaces of fractional order and related dual properties
%J Journal of nonlinear sciences and its applications
%D 2015
%P 997-1004
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.10/
%R 10.22436/jnsa.008.06.10
%G en
%F JNSA_2015_8_6_a9
Kadak, Ugur; Baliarsingh, P. On certain Euler difference sequence spaces of fractional order and related dual properties. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 6, p. 997-1004. doi : 10.22436/jnsa.008.06.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.10/

[1] Ahmad, Z. U.; Mursaleen, M. Köthe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. (Beograd), Volume 42 (1987), pp. 57-61

[2] Altay, B.; F. Başar On some Euler sequence spaces of non-absolute type, Ukrainian Math. J., Volume 57 (2005), pp. 1-17

[3] Altay, B.; Başar, F.; M. Mursaleen On the Euler sequence spaces which include the spaces \(\ell_p\) and \(\ell_\infty\) , I. Inform. Sci., Volume 76 (2006), pp. 1450-1462

[4] Altay, B.; H. Polat On some new Euler difference sequence spaces, Southeast Asian Bull. Math., Volume 30 (2006), pp. 209-220

[5] Aydın, C.; F. Başar Some new difference sequence spaces, Appl. Math. Comput., Volume 157 (3) (2004), pp. 677-693

[6] Baliarsingh, P.; S. Dutta A unifying approach to the difference operators and their applications, Bol. Soc. Paran. Mat., Volume 33 (2015), pp. 49-57

[7] Baliarsingh, P.; Dutta, S. On the classes of fractional order difference sequence spaces and their matrix transformations , Appl. Math. Comput., Volume 250 (2015), pp. 665-674

[8] Baliarsingh, P. Some new difference sequence spaces of fractional order and their dual spaces, Appl. Math. Comput., Volume 219 (2013), pp. 9737-9742

[9] Baliarsingh, P.; Dutta, S. On an explicit formula for inverse of triangular matrices, J. Egypt. Math. Soc., Volume 23 (2015), pp. 297-302

[10] Başar, F. Summability Theory and Its Applications, Bentham Science Publishers, Istanbul, 2012

[11] Bektas, Ç .; Et, M.; Çolak, R. Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl., Volume 292 (2004), pp. 423-432

[12] Dutta, S.; P. Baliarsingh On some Toeplitz matrices and their inversion, J. Egypt. Math. Soc., Volume 22 (2014), pp. 420-423

[13] Dutta, S.; Baliarsingh, P. A note on paranormed difference sequence spaces of fractional order and their matrix transformations, J. Egypt. Math. Soc., Volume 22 (2014), pp. 249-253

[14] Et, M.; M. Basarir On some new generalized difference sequence spaces, Periodica Math. Hungar., Volume 35 (1997), pp. 169-175

[15] Et, M.; Çolak, R. On some generalized difference sequence spaces , Soochow J. Math., Volume 21 (1995), pp. 377-386

[16] Kadak, U. Generalized lacunary statistical difference sequence spaces of fractional order, Internat. J. Math. Math. Sci. (2015)

[17] H. Kızmaz On Certain Sequence spaces, Canad. Math. Bull. , Volume 24 (1981), pp. 169-176

[18] Malkowsky, E.; Mursaleen, M.; S. Suantai The dual spaces of sets of difference sequences of order m and matrix transformations , Acta Math. Sin. (English Series), Volume 23 (2007), pp. 521-532

[19] Mursaleen, M. Generalized spaces of difference sequences , J. Math. Anal. Appl., Volume 203 (1996), pp. 738-745

[20] Mursaleen, M.; Noman, A. K. On some new difference sequence spaces of non-absolute type, Math. Comput. Modelling, Volume 52 (2010), pp. 603-617

[21] Polat, H.; F. Başar Some Euler spaces of difference sequences of order m , Acta Math. Sci. Ser. B., Engl. Ed., Volume 27 (2007), pp. 254-266

[22] Stieglitz, M.; Tietz, H. Matrix transformationen von Folgenraumen Eine Ergebnisubersict, Math. Z., Volume 154 (1977), pp. 1-16

[23] Tripathy, B. C.; Altin, Y.; Et, M. Generalized difference sequence spaces defined by Orlicz functions, Math Slovaca, Volume 58 (2008), pp. 315-324

Cité par Sources :