Voir la notice de l'article provenant de la source International Scientific Research Publications
ORegan, Donal 1
@article{JNSA_2015_8_6_a8, author = {ORegan, Donal}, title = {Generalized {Lefschetz} fixed point theorems in extension type spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {986-996}, publisher = {mathdoc}, volume = {8}, number = {6}, year = {2015}, doi = {10.22436/jnsa.008.06.09}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.09/} }
TY - JOUR AU - ORegan, Donal TI - Generalized Lefschetz fixed point theorems in extension type spaces JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 986 EP - 996 VL - 8 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.09/ DO - 10.22436/jnsa.008.06.09 LA - en ID - JNSA_2015_8_6_a8 ER -
%0 Journal Article %A ORegan, Donal %T Generalized Lefschetz fixed point theorems in extension type spaces %J Journal of nonlinear sciences and its applications %D 2015 %P 986-996 %V 8 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.09/ %R 10.22436/jnsa.008.06.09 %G en %F JNSA_2015_8_6_a8
ORegan, Donal. Generalized Lefschetz fixed point theorems in extension type spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 6, p. 986-996. doi : 10.22436/jnsa.008.06.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.09/
[1] The coincidence problem for compositions of set valued maps , Bull. Austral. Math. Soc., Volume 41 (1990), pp. 421-434
[2] Spaces and maps approximation and fixed points, J. Comput. Appl. Math., Volume 113 (2000), pp. 283-308
[3] General fixed point theorems for nonconvex set-valued maps, C. R. Acad. Sci. Paris, Volume 312 (1991), pp. 433-438
[4] General Topology, Heldermann Verlag, Berlin, 1989
[5] The Lefschetz fixed point theorem for multi-valued maps of non-metrizable spaces, Fund. Math., Volume 92 (1976), pp. 213-222
[6] Topological fixed point theory of multivalued mappings, Kluwer Acad. Publishers, Dordrecht, 1999
[7] Some general theorems in coincidence theory, I. J. Math. Pures Appl., Volume 60 (1981), pp. 361-373
[8] Fixed point theory, Springer, New York, 2003
[9] General Topology, D. Van Nostrand Reinhold Co., New York, 1955
[10] Lefschetz fixed point theorems in generalized neighborhood extension spaces with respect to a map , Rend. Circ. Mat. Palermo, Volume 59 (2010), pp. 319-330
[11] Fixed point theory in generalized approximate neighborhood extension spaces , Fixed Point Theory, Volume 12 (2011), pp. 155-164
[12] Lefschetz type theorem for a class of noncompact mappings, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 288-295
Cité par Sources :