Generalized Lefschetz fixed point theorems in extension type spaces
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 6, p. 986-996.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Several Lefschetz fixed point theorems for compact type self maps in new classes of spaces are presented in this paper.
DOI : 10.22436/jnsa.008.06.09
Classification : 47H10
Keywords: Extension spaces, fixed point theory, Lefschetz fixed point theorem.

ORegan, Donal 1

1 School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
@article{JNSA_2015_8_6_a8,
     author = {ORegan, Donal},
     title = {Generalized {Lefschetz} fixed point theorems in extension type spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {986-996},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {2015},
     doi = {10.22436/jnsa.008.06.09},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.09/}
}
TY  - JOUR
AU  - ORegan, Donal
TI  - Generalized Lefschetz fixed point theorems in extension type spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 986
EP  - 996
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.09/
DO  - 10.22436/jnsa.008.06.09
LA  - en
ID  - JNSA_2015_8_6_a8
ER  - 
%0 Journal Article
%A ORegan, Donal
%T Generalized Lefschetz fixed point theorems in extension type spaces
%J Journal of nonlinear sciences and its applications
%D 2015
%P 986-996
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.09/
%R 10.22436/jnsa.008.06.09
%G en
%F JNSA_2015_8_6_a8
ORegan, Donal. Generalized Lefschetz fixed point theorems in extension type spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 6, p. 986-996. doi : 10.22436/jnsa.008.06.09. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.09/

[1] H. Ben-El-Mechaiekh The coincidence problem for compositions of set valued maps , Bull. Austral. Math. Soc., Volume 41 (1990), pp. 421-434

[2] Ben-El-Mechaiekh, H. Spaces and maps approximation and fixed points, J. Comput. Appl. Math., Volume 113 (2000), pp. 283-308

[3] Ben-El-Mechaiekh, H.; Deguire, P. General fixed point theorems for nonconvex set-valued maps, C. R. Acad. Sci. Paris, Volume 312 (1991), pp. 433-438

[4] Engelking, R. General Topology, Heldermann Verlag, Berlin, 1989

[5] Fournier, G.; Gorniewicz, L. The Lefschetz fixed point theorem for multi-valued maps of non-metrizable spaces, Fund. Math., Volume 92 (1976), pp. 213-222

[6] Gorniewicz, L. Topological fixed point theory of multivalued mappings, Kluwer Acad. Publishers, Dordrecht, 1999

[7] Gorniewicz, L.; Granas, A. Some general theorems in coincidence theory, I. J. Math. Pures Appl., Volume 60 (1981), pp. 361-373

[8] Granas, A.; J. Dugundji Fixed point theory, Springer, New York, 2003

[9] J. L. Kelley General Topology, D. Van Nostrand Reinhold Co., New York, 1955

[10] D. O'Regan Lefschetz fixed point theorems in generalized neighborhood extension spaces with respect to a map , Rend. Circ. Mat. Palermo, Volume 59 (2010), pp. 319-330

[11] D. O'Regan Fixed point theory in generalized approximate neighborhood extension spaces , Fixed Point Theory, Volume 12 (2011), pp. 155-164

[12] D. O'Regan Lefschetz type theorem for a class of noncompact mappings, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 288-295

Cité par Sources :