Fixed point theorems for ($\alpha, \psi$)-Meir-Keeler-Khan mappings
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 6, p. 955-964.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we establish fixed point theorems for a ($\alpha,\psi$ )-Meir-Keeler-Khan self mappings. The main result of our work is an extension of the theorem of Khan [M. S. Khan, Rend. Inst. Math. Univ. Trieste. Vol VIII, Fase., 10 (1976), 1-4]. We also give some consequences.
DOI : 10.22436/jnsa.008.06.06
Classification : 47H10, 54H25
Keywords: Complete metric space, (c)-comparison function, fixed point, (\(\alpha, \psi\))-Meir-Keeler-Khan mapping, \(\alpha\)-admissible mapping.

Redjel, Najeh 1 ; Dehici, Abdelkader 2 ; Karapinar, Erdal 3 ; Erhan, Inci M. 4

1 Laboratory of Informatics and Mathematics, University of Souk-Ahras, P.O. Box 1553, Souk-Ahras 41000, Algeria;Department of Mathematics, University of Constantine 1, Constantine 25000, Algeria
2 Laboratory of Informatics and Mathematics, University of Souk-Ahras, P.O. Box 1553, Souk-Ahras 41000, Algeria;Department of Mathematics, University of Constantine 1, Constantine 25000, Algeria
3 Department of Mathematics, Atilim University 06836, Incek, Ankara, Turkey;Nonlinear Analysis and Applied Mathematics Research Group (NAAM), King Abdulaziz University, 21589, Jeddah, Saudi Arabia
4 Department of Mathematics, Atilim University 06836, Incek, Ankara, Turkey
@article{JNSA_2015_8_6_a5,
     author = {Redjel, Najeh and Dehici, Abdelkader and Karapinar, Erdal and Erhan, Inci M.},
     title = {Fixed point theorems for (\(\alpha, {\psi\))-Meir-Keeler-Khan} mappings},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {955-964},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {2015},
     doi = {10.22436/jnsa.008.06.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.06/}
}
TY  - JOUR
AU  - Redjel, Najeh
AU  - Dehici, Abdelkader
AU  - Karapinar, Erdal
AU  - Erhan, Inci M.
TI  - Fixed point theorems for (\(\alpha, \psi\))-Meir-Keeler-Khan mappings
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 955
EP  - 964
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.06/
DO  - 10.22436/jnsa.008.06.06
LA  - en
ID  - JNSA_2015_8_6_a5
ER  - 
%0 Journal Article
%A Redjel, Najeh
%A Dehici, Abdelkader
%A Karapinar, Erdal
%A Erhan, Inci M.
%T Fixed point theorems for (\(\alpha, \psi\))-Meir-Keeler-Khan mappings
%J Journal of nonlinear sciences and its applications
%D 2015
%P 955-964
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.06/
%R 10.22436/jnsa.008.06.06
%G en
%F JNSA_2015_8_6_a5
Redjel, Najeh; Dehici, Abdelkader; Karapinar, Erdal; Erhan, Inci M. Fixed point theorems for (\(\alpha, \psi\))-Meir-Keeler-Khan mappings. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 6, p. 955-964. doi : 10.22436/jnsa.008.06.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.06/

[1] Aydi, H.; Karapınar, E.; Samet, B. Fixed points for generalized (\(\alpha-\psi\) ) contractions on generalized metric spaces, J. Inequal. Appl., Volume 2014 (2014), pp. 1-16

[2] Aydi, H.; Jellali, M.; Karapınar, E. Common fixed points for generalized \(\alpha\)-implicit contractions in partial metric spaces: Consequences and application, RACSAM, Volume 2014 (2014), pp. 1-18

[3] Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., Volume 3 (1922), pp. 133-181

[4] Berinde, V. Iterative approximation of fixed points, Editura efemeride. Baia Mare, Roumania, 2002

[5] Branciari, A. A fixed point theorem for mappings satisfying a general contractive condition of integral type, Inter. Jour. Math. Mathematical. Sci., Volume 29 (2002), pp. 531-536

[6] Fisher, B. On a theorem of Khan, Riv. Math. Univ. Parma., Volume 4 (1978), pp. 135-137

[7] Karapinar, E.; Samet, B. Generalized \(\alpha-\psi\) contractive type mappings and related fixed point theorems with applications, Abstract. Appl. Anal., Volume 2012 (2012), pp. 1-17

[8] Khan, M. S. A fixed point theorem for metric spaces, Rend. Inst. Math. Univ. Trieste, Volume 8 (1976), pp. 69-72

[9] Khan, M. S. Some fixed point theorems, Indian. J. Pure. Appl. Math., Volume 8 (1977), pp. 1511-1514

[10] Latif, A.; Gordji, M. E.; Karapinar, E.; Sintunavarat, W. Fixed point results for generalized (\(\alpha,\psi\))-Meir-Keeler contractive mappings and appplications, J. Ineq. Appl., Volume 2014 (2014), pp. 1-11

[11] Meir, A.; E. Keeler A theorem on contraction mappings , J. Math. Anal. Appl., Volume 28 (1969), pp. 326-329

[12] Popa, V.; Mocanu, M. Altering distance and common fixed points under implicit relations, Hacetepe. J. Math. Stat., Volume 38 (2009), pp. 329-337

[13] Ray, B. K.; Singh, S. P. Fixed point theorems in Banach Spaces , Indian. J. Pure. App. Math., Volume 9 (1978), pp. 216-221

[14] N. Redjel On some extensions of Banach's contraction principle and application to the convergence of some iterative processes, Adv. Fixed. Point. Theory., Volume 4 (2014), pp. 555-570

[15] Redjel, N.; A. Dehici On some fixed points of generalized contractions with rational expressions and applications, Adv. Fixed. Point. Theory., Volume 5 (2015), pp. 56-70

[16] Samet, B.; Vetro, C.; H. Yazidi A fixed point theorem for a Meir-Keeler type contraction through rational expression, J. Nonlinear. Sci. Appl., Volume 6 (2013), pp. 162-169

[17] Samet, B.; Vetro, C.; Vetro, P. Fixed point theorem for \(\alpha-\psi\) -contractive type mappings, J. Nonlinear. Anal., Volume 75 (2012), pp. 2154-2165

Cité par Sources :