Voir la notice de l'article provenant de la source International Scientific Research Publications
Redjel, Najeh 1 ; Dehici, Abdelkader 2 ; Karapinar, Erdal 3 ; Erhan, Inci M. 4
@article{JNSA_2015_8_6_a5, author = {Redjel, Najeh and Dehici, Abdelkader and Karapinar, Erdal and Erhan, Inci M.}, title = {Fixed point theorems for (\(\alpha, {\psi\))-Meir-Keeler-Khan} mappings}, journal = {Journal of nonlinear sciences and its applications}, pages = {955-964}, publisher = {mathdoc}, volume = {8}, number = {6}, year = {2015}, doi = {10.22436/jnsa.008.06.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.06/} }
TY - JOUR AU - Redjel, Najeh AU - Dehici, Abdelkader AU - Karapinar, Erdal AU - Erhan, Inci M. TI - Fixed point theorems for (\(\alpha, \psi\))-Meir-Keeler-Khan mappings JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 955 EP - 964 VL - 8 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.06/ DO - 10.22436/jnsa.008.06.06 LA - en ID - JNSA_2015_8_6_a5 ER -
%0 Journal Article %A Redjel, Najeh %A Dehici, Abdelkader %A Karapinar, Erdal %A Erhan, Inci M. %T Fixed point theorems for (\(\alpha, \psi\))-Meir-Keeler-Khan mappings %J Journal of nonlinear sciences and its applications %D 2015 %P 955-964 %V 8 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.06/ %R 10.22436/jnsa.008.06.06 %G en %F JNSA_2015_8_6_a5
Redjel, Najeh; Dehici, Abdelkader; Karapinar, Erdal; Erhan, Inci M. Fixed point theorems for (\(\alpha, \psi\))-Meir-Keeler-Khan mappings. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 6, p. 955-964. doi : 10.22436/jnsa.008.06.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.06/
[1] Fixed points for generalized (\(\alpha-\psi\) ) contractions on generalized metric spaces, J. Inequal. Appl., Volume 2014 (2014), pp. 1-16
[2] Common fixed points for generalized \(\alpha\)-implicit contractions in partial metric spaces: Consequences and application, RACSAM, Volume 2014 (2014), pp. 1-18
[3] Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., Volume 3 (1922), pp. 133-181
[4] Iterative approximation of fixed points, Editura efemeride. Baia Mare, Roumania, 2002
[5] A fixed point theorem for mappings satisfying a general contractive condition of integral type, Inter. Jour. Math. Mathematical. Sci., Volume 29 (2002), pp. 531-536
[6] On a theorem of Khan, Riv. Math. Univ. Parma., Volume 4 (1978), pp. 135-137
[7] Generalized \(\alpha-\psi\) contractive type mappings and related fixed point theorems with applications, Abstract. Appl. Anal., Volume 2012 (2012), pp. 1-17
[8] A fixed point theorem for metric spaces, Rend. Inst. Math. Univ. Trieste, Volume 8 (1976), pp. 69-72
[9] Some fixed point theorems, Indian. J. Pure. Appl. Math., Volume 8 (1977), pp. 1511-1514
[10] Fixed point results for generalized (\(\alpha,\psi\))-Meir-Keeler contractive mappings and appplications, J. Ineq. Appl., Volume 2014 (2014), pp. 1-11
[11] A theorem on contraction mappings , J. Math. Anal. Appl., Volume 28 (1969), pp. 326-329
[12] Altering distance and common fixed points under implicit relations, Hacetepe. J. Math. Stat., Volume 38 (2009), pp. 329-337
[13] Fixed point theorems in Banach Spaces , Indian. J. Pure. App. Math., Volume 9 (1978), pp. 216-221
[14] On some extensions of Banach's contraction principle and application to the convergence of some iterative processes, Adv. Fixed. Point. Theory., Volume 4 (2014), pp. 555-570
[15] On some fixed points of generalized contractions with rational expressions and applications, Adv. Fixed. Point. Theory., Volume 5 (2015), pp. 56-70
[16] A fixed point theorem for a Meir-Keeler type contraction through rational expression, J. Nonlinear. Sci. Appl., Volume 6 (2013), pp. 162-169
[17] Fixed point theorem for \(\alpha-\psi\) -contractive type mappings, J. Nonlinear. Anal., Volume 75 (2012), pp. 2154-2165
Cité par Sources :