Voir la notice de l'article provenant de la source International Scientific Research Publications
Yao, Zhangsong 1 ; Zhu, Li-Jun 2 ; Kang, Shin Min 3 ; Liou, Yeong-Cheng 4
@article{JNSA_2015_8_6_a3, author = {Yao, Zhangsong and Zhu, Li-Jun and Kang, Shin Min and Liou, Yeong-Cheng}, title = {Iterative algorithms with perturbations for {Lipschitz} pseudocontractive mappings in {Banach} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {935-943}, publisher = {mathdoc}, volume = {8}, number = {6}, year = {2015}, doi = {10.22436/jnsa.008.06.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.04/} }
TY - JOUR AU - Yao, Zhangsong AU - Zhu, Li-Jun AU - Kang, Shin Min AU - Liou, Yeong-Cheng TI - Iterative algorithms with perturbations for Lipschitz pseudocontractive mappings in Banach spaces JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 935 EP - 943 VL - 8 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.04/ DO - 10.22436/jnsa.008.06.04 LA - en ID - JNSA_2015_8_6_a3 ER -
%0 Journal Article %A Yao, Zhangsong %A Zhu, Li-Jun %A Kang, Shin Min %A Liou, Yeong-Cheng %T Iterative algorithms with perturbations for Lipschitz pseudocontractive mappings in Banach spaces %J Journal of nonlinear sciences and its applications %D 2015 %P 935-943 %V 8 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.04/ %R 10.22436/jnsa.008.06.04 %G en %F JNSA_2015_8_6_a3
Yao, Zhangsong; Zhu, Li-Jun; Kang, Shin Min; Liou, Yeong-Cheng. Iterative algorithms with perturbations for Lipschitz pseudocontractive mappings in Banach spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 6, p. 935-943. doi : 10.22436/jnsa.008.06.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.04/
[1] A strongly convergent iterative method for the solution of \(0 \in Ux\) for a maximal monotone operator U in Hilbert space, J. Math. Anal. Appl., Volume 48 (1974), pp. 114-126
[2] On Chidume's open questions and approximate solutions of multivalued strongly accretive mapping equations in Banach spaces, J. Math. Anal. Appl., Volume 216 (1997), pp. 94-111
[3] Approximation of fixed points of strongly pseudocontractive mappings, Proc. Amer. Math. Soc., Volume 120 (1994), pp. 545-551
[4] Global iteration schemes for strongly pseudocontractive maps, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 2641-2649
[5] Fixed point iteration for pseudocontractive maps, Proc. Amer. Math. Soc., Volume 127 (1999), pp. 1163-1170
[6] An example on the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 2359-2363
[7] Strong convergence theorems for uniformly continuous pseudocontractive maps, J. Math. Anal. Appl., Volume 323 (2006), pp. 88-99
[8] Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps, Proc. Amer. Math. Soc., Volume 132 (2004), pp. 831-840
[9] Zeros of accretive operators, Manuscripta Math., Volume 13 (1974), pp. 365-374
[10] Iteration processes for nonlinear Lipschitzian strongly accretive mappings in Lp spaces, J. Math. Anal. Appl., Volume 188 (1994), pp. 128-140
[11] Iterative approximation of Lipschitz strictly pseudocontractive mappings in uniformly smooth Banach spaces, Nonlinear Anal., Volume 24 (1995), pp. 981-987
[12] Iterative process with errors to locally strictly pseudocontractive maps in Banach spaces, Comput. Math. Appl., Volume 32 (1996), pp. 91-97
[13] Topics in metric fixed point theory, Cambridge University Press, Cambridge, 1990
[14] New iteration procedures with errors for multivalued \(\phi\)-strongly pseudocontractive and \(\phi\)-strongly accretive mappings, Comput. Math. Appl., Volume 43 (2002), pp. 1381-1390
[15] Convergence of iterative processes with errors for set-valued pseudocontractive and accretive type mappings in Banach spaces, Comput. Math. Appl., Volume 40 (2000), pp. 1127-1139
[16] Fixed point by a new iteration method , Proc. Amer. Math. Soc., Volume 4 (1974), pp. 147-150
[17] Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, Volume 19 (1967), pp. 508-520
[18] Mean value methods in iteration, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510
[19] Differential equations on closed subsets of Banach space, Trans. Amer. Math. Soc., Volume 179 (1973), pp. 399-414
[20] Convergence of paths for pseudocontractive mappings in Banach spaces, Proc. Amer. Math. Soc., Volume 128 (2000), pp. 3411-3419
[21] An iterative procedure for constructing zero of accretive sets in Banach spaces, Nonlinear Anal., Volume 2 (1978), pp. 85-92
[22] Constructive techniques for accretive and monotone operators, Applied Nonlinear Analysis, Academic Press, New York, 1979
[23] Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., Volume 75 (1980), pp. 287-292
[24] Approximating fixed points of Lipschitzian pseudocontractive mappings, Houston J. Math., Volume 19 (1993), pp. 107-115
[25] Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl., Volume 298 (2004), pp. 279-291
[26] Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl., Volume 224 (1998), pp. 91-101
[27] Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces, Nonlinear Anal., Volume 67 (2007), pp. 3311-3317
[28] Strong convergence of an iterative algorithm on an infinite countable family of nonexpansive mappings, Appl. Math. Comput., Volume 208 (2009), pp. 211-218
[29] Strong convergence of approximants to fixed points of Lipschitzian pseudocontractive maps, Comput. Math. Appl., Volume 44 (2002), pp. 339-346
[30] Viscosity approximation methods for pseudocontractive mappings in Banach spaces, Appl. Math. Comput., Volume 185 (2007), pp. 538-546
[31] Iterative approximation of solutions to nonlinear equations of strongly accretive operators in Banach spaces, Nonlinear Anal., Volume 31 (1998), pp. 589-598
[32] Convergence theorems of common fixed points for a finite family of Lipschitz pseudocontractions in Banach spaces, Nonlinear Anal., Volume 68 (2008), pp. 2977-2983
Cité par Sources :