Coincidence points of generalized multivalued $(f,L)$-almost $F$-contraction with applications
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 6, p. 919-934.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Recently Abbas [M. Abbas, Coincidence points of multivalued $f$-almost nonexpansive mappings, Fixed Point Theory, 13 (1) (2012), 3-10] introduced the concept of $f$-almost contraction which generalizes the class of multivalued almost contraction mapping and obtained coincidence point results for this new class of mappings. We extend this notion to multivalued $f$-almost $F$-contraction mappings and prove the existence of coincidence points for such mappings. As a consequence, coincidence point results are obtained for generalized multivalued $f$-almost $F$-nonexpansive mappings which assume closed values only. Related common fixed point theorems are also proved. In the last section, applications of our results in dynamic programming and integral equations to show the existence and uniqueness of solutions are obtained. We present some remarks to show that our results provide extension as well as substantial generalizations and improvements of several well known results in the existing comparable literature.
DOI : 10.22436/jnsa.008.06.03
Classification : 47H04, 47H10, 54H25, 60H25
Keywords: Coincidence point, multivalued \(f\)-almost weak contraction, star shaped sets, integral equations, dynamic programming.

Abbas, Mujahid 1 ; Ali, Basit 1 ; Romaguera, Salvador 2

1 Department of Mathematics and Applied Mathematics, University of Pretoria, Lynnwood road, Pretoria 0002, South Africa
2 Instituto Universitario de Matematica Pura y Aplica, Universitat Politécnica de Valencia, Camí de Vera s/n, 46022 Valencia, Spain
@article{JNSA_2015_8_6_a2,
     author = {Abbas, Mujahid and Ali, Basit and Romaguera, Salvador},
     title = {Coincidence points of generalized multivalued {\((f,L)\)-almost} {\(F\)-contraction} with applications},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {919-934},
     publisher = {mathdoc},
     volume = {8},
     number = {6},
     year = {2015},
     doi = {10.22436/jnsa.008.06.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.03/}
}
TY  - JOUR
AU  - Abbas, Mujahid
AU  - Ali, Basit
AU  - Romaguera, Salvador
TI  - Coincidence points of generalized multivalued \((f,L)\)-almost \(F\)-contraction with applications
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 919
EP  - 934
VL  - 8
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.03/
DO  - 10.22436/jnsa.008.06.03
LA  - en
ID  - JNSA_2015_8_6_a2
ER  - 
%0 Journal Article
%A Abbas, Mujahid
%A Ali, Basit
%A Romaguera, Salvador
%T Coincidence points of generalized multivalued \((f,L)\)-almost \(F\)-contraction with applications
%J Journal of nonlinear sciences and its applications
%D 2015
%P 919-934
%V 8
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.03/
%R 10.22436/jnsa.008.06.03
%G en
%F JNSA_2015_8_6_a2
Abbas, Mujahid; Ali, Basit; Romaguera, Salvador. Coincidence points of generalized multivalued \((f,L)\)-almost \(F\)-contraction with applications. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 6, p. 919-934. doi : 10.22436/jnsa.008.06.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.06.03/

[1] Abbas, M. Coincidence Points of Multivalued f-Almost Nonexpansive mappings, Fixed Point Theory, Volume 13 (2012), pp. 3-10

[2] Abbas, M.; Ali, B.; Romaguera, S. Generalized contraction and invariant approximation results on nonconvex subsets of normed spaces, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-5

[3] Abbas, M.; Ali, B.; Romaguera, S. Fixed and periodic points of generalized contractions in metric spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-11

[4] Acar, O.; Durmaz, G.; G. Minak Generalized Multivalued F-Contraction on Complete Metric Spaces , Bull. Iranian Math. Soc., Volume 40 (2014), pp. 1469-1478

[5] Altun, I.; Minak, G.; Dağ, H. Multivalued F-contraction on complete metric spaces, J. Nonlinear Convex Anal. (Accepted)

[6] Al-Thagafi, M. A.; Shahzad, N. Coincidence points, generalized I-nonexpansive multimaps and applications, Nonlinear Anal., Volume 67 (2007), pp. 2180-2188

[7] Augustynowicz, A. Existence and uniqueness of solutions for partial differential-functional equations of the first order with deviating argument of the derivative of unknown function, Serdica Math. J., Volume 23 (1997), pp. 203-210

[8] Baskaran, R.; Subrahmanyam, P. V. A note on the solution of a class of functional equations, Appl. Anal., Volume 22 (1986), pp. 235-241

[9] Bellman, R. Methods of Nonlinear Analysis. Vol. II. , Mathematics in Science and Engineering, Academic Press, New York, 1970

[10] Bellman, R.; Lee, E. S. Functional equations in dynamic programming, Aequation Math., Volume 17 (1978), pp. 1-18

[11] Bhakta, P. C.; Mitra, S. Some existence theorems for functional equations arising in dynamic programming, J. Math. Anal. Appl., Volume 98 (1984), pp. 348-362

[12] Berinde, V. Approximating fixed points of weak contraction using the Picard iteration , Nonlinear Anal. Forum., Volume 9 (2004), pp. 43-53

[13] Berinde, M.; Berinde, V. On general class of multivalued weakly Picard mappings, J. Math. Anal. Appl., Volume 326 (2007), pp. 772-782

[14] Berinde, V.; acurar, M. P Fixed points and continuity of almost contractions, Fixed Point Theory, Volume 9 (2008), pp. 23-34

[15] Berinde, V. Some remarks on a fixed point theorem for Ciric-type almost contractions, Carpathian J. Math., Volume 25 (2009), pp. 157-162

[16] Berinde, V.; Păcurar, M. Fixed points and continuity of almost contractions, Fixed Point Theory, Volume 9 (2008), pp. 23-34

[17] Berinde, V.; Păcurar, M. A note on the paper ''Remarks on fixed point theorems of Berinde'', Nonlinear Anal. Forum., Volume 14 (2009), pp. 119-124

[18] Hussain, N.; Jungck, G. Common fixed point and invariant approximation results for noncommuting generalized (f; g)-nonexpansive maps, J. Math. Anal. Appl., Volume 321 (2006), pp. 851-861

[19] Jungck, G. Commuting mappings and fixed points, Amer. Math. Monthly, Volume 83 (1976), pp. 261-263

[20] Jungck, G. Common fixed points for commuting and compatible maps on compacta, Proc. Amer. Soc., Volume 103 (1988), pp. 977-983

[21] Jungck, G.; Rhoades, B. E. Fixed points for set valued functions without continuity , Indian J. Pure Appl. Math., Volume 29 (1998), pp. 227-238

[22] T. Kamran Multivalued f-weakly Picard mappings, Nonlinear Anal., Volume 67 (2007), pp. 2289-2296

[23] Latif, A.; I. Tweddle On multivalued nonexpansive maps, Demonstratio. Math., Volume 32 (1999), pp. 565-574

[24] Nadler, S. B; Jr. Multivalued contraction mappings, Pacific J. Math., Volume 30 (1969), pp. 475-488

[25] Minak, G.; Halvaci, A.; Altun, I. Ćirić type generalized F-contractions on complete metric spaces and fixed point results, Filomat, Volume 28 (2014), pp. 1143-1151

[26] ORegan, D.; Petruşel, A. Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl., Volume 341 (2008), pp. 1241-1252

[27] Osilike, M. O.; Aniagborsor, S. C. Weak and strong convergence theorems for fixed points of asymptotically non- expansive mappings, Math. Comput. Modelling, Volume 32 (2000), pp. 1181-1191

[28] Pathak, H. K.; Cho, Y. J.; Kang, S. M.; Lee, B. S. Fixed point theorems for compatible mappings of type P and applications to dynamic programming, Matematiche, Volume 50 (1995), pp. 15-33

[29] Rhaodes, B. E. On multivalued f-nonexpansive maps, Fixed Point Theory Appl., Volume 2 (2001), pp. 89-92

[30] Sgroi, M.; Vetro, C. Multi-valued F-Contractions and the Solution of certain Functional and integral Equations, Filomat, Volume 27 (2013), pp. 1259-1268

[31] D. Wardowski Fixed points of new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-6

[32] Wardowski, D.; Dung, N. V. Fixed points of F-weak contractions on complete metric spaces, Demonstr. Math., Volume 1 (2014), pp. 146-155

Cité par Sources :