Global stability of a time-delayed multi-group SIS epidemic model with nonlinear incidence rates and patch structure
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 578-599.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we formulate and study a multi-group SIS epidemic model with time-delays, nonlinear incidence rates and patch structure. Two types of delays are incorporated to concern the time-delay of infection and that for population exchange among different groups. Taking into account both of the effects of crossregion infection and the population exchange, we define the basic reproduction number $\mathcal{R}_0$ by the spectral radius of the next generation matrix and prove that it is a threshold value, which determines the global stability of each equilibrium of the model. That is, it is shown that if $\mathcal{R}_0\leq 1$, the disease-free equilibrium is globally asymptotically stable, while if $\mathcal{R}_0 > 1$, the system is permanent, an endemic equilibrium exists and it is globally asymptotically stable. These global stability results are achieved by constructing Lyapunov functionals and applying LaSalle's invariance principle to a reduced system. Numerical simulation is performed to support our theoretical results.
DOI : 10.22436/jnsa.008.05.11
Classification : 34D23, 34K20, 92D30
Keywords: SIS epidemic model, time-delay, nonlinear incidence rate, patch structure.

Wang, Jinliang 1 ; Muroya, Yoshiaki 2 ; Kuniya, Toshikazu 3

1 School of Mathematical Science, Heilongjiang University, Harbin 150080, China
2 Department of Mathematics, Waseda University 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169- 8555, Japan
3 Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
@article{JNSA_2015_8_5_a10,
     author = {Wang, Jinliang and Muroya, Yoshiaki and Kuniya, Toshikazu},
     title = {Global stability of a time-delayed multi-group {SIS} epidemic model with nonlinear incidence rates and patch structure},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {578-599},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2015},
     doi = {10.22436/jnsa.008.05.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.11/}
}
TY  - JOUR
AU  - Wang, Jinliang
AU  - Muroya, Yoshiaki
AU  - Kuniya, Toshikazu
TI  - Global stability of a time-delayed multi-group SIS epidemic model with nonlinear incidence rates and patch structure
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 578
EP  - 599
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.11/
DO  - 10.22436/jnsa.008.05.11
LA  - en
ID  - JNSA_2015_8_5_a10
ER  - 
%0 Journal Article
%A Wang, Jinliang
%A Muroya, Yoshiaki
%A Kuniya, Toshikazu
%T Global stability of a time-delayed multi-group SIS epidemic model with nonlinear incidence rates and patch structure
%J Journal of nonlinear sciences and its applications
%D 2015
%P 578-599
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.11/
%R 10.22436/jnsa.008.05.11
%G en
%F JNSA_2015_8_5_a10
Wang, Jinliang; Muroya, Yoshiaki; Kuniya, Toshikazu. Global stability of a time-delayed multi-group SIS epidemic model with nonlinear incidence rates and patch structure. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 578-599. doi : 10.22436/jnsa.008.05.11. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.11/

[1] Arino, J.; Driessche, P. V. D. A multi-city epidemic model , Math. Popul. Stud., Volume 10 (2003), pp. 175-193

[2] Atkinson, F. V.; Haddock, J. R. On determining phase spaces for functional differential equations, Funkcial. Ekvac., Volume 31 (1988), pp. 331-347

[3] Beretta, E.; Takeuchi, Y. Global stability of an SIR epidemic model with time delays, J. Math. Biol., Volume 33 (1995), pp. 250-260

[4] Berman, A.; Plemmons, R. Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York- London, 1979

[5] Brauer, F.; Driessche, P. V. D. Models for transmission of disease with immigration of infectives, Math. Biosci., Volume 171 (2001), pp. 143-154

[6] Cui, J.; Takeuchi, Y.; Lin, Z. Permanent and extinction for dispersal population systems, J. Math. Anal. Appl., Volume 298 (2004), pp. 73-93

[7] Diekmann, O.; Heesterbeek, J. A. P.; Metz, J. A. J. On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations, J. Math. Biol., Volume 28 (1990), pp. 365-382

[8] Enatsu, Y.; Nakata, Y.; Muroya, Y. Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays, Discrete Contin. Dyn. Syst. B, Volume 15 (2011), pp. 61-74

[9] Faria, T. Global dynamics for Lotka-Volterra systems with infinite delay and patch structure, Appl. Math. Comput., Volume 245 (2014), pp. 575-590

[10] Fiedler, M. Special matrices and their applications in numerical mathematics, Martinus Nijhoff Publishers, Dordrecht , 1986

[11] Guo, H.; Li, M. Y.; Shuai, Z. S. Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Quart., Volume 14 (2006), pp. 259-284

[12] Hethcote, H. W. Qualitative analyses of communicable disease models, Math Biosci., Volume 28 (1976), pp. 335-356

[13] Hino, Y.; Murakami, S.; Naito, T. Functional Differential Equations with Infinite Delay, Springer, Berlin, 1991

[14] Jin, Y.; Wang, W. The effect of population dispersal on the spread of a disease, J. Math. Anal. Appl., Volume 308 (2005), pp. 343-364

[15] Kermack, W. O.; McKendrick, A. G. Contributions to the mathematical theory of epidemics I, Bull. Math. Bio., Volume 53 (1991), pp. 33-55

[16] Kuniya, T.; Muroya, Y. Global stability of a multi-group SIS epidemic model for population migration, Disc. Cont. Dyn. Syst. B, Volume 19 (2014), pp. 1105-1118

[17] Kuniya, T.; Muroya, Y. Global stability of a multi-group SIS epidemic model with varying total population size, Appl. Math. Comput. (accepted)

[18] Lajmanovich, A.; Yorke, J. A. A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., Volume 28 (1976), pp. 221-236

[19] LaSalle, J. P. The stability of dynamical systems, SIAM, Philadelphia, 1976

[20] S. Levin Dispersion and population interactions, Amer. Nat., Volume 108 (1974), pp. 207-228

[21] Li, M. Y.; Shuai, Z. S. Global stability of an epidemic model in a patchy environment, Can. Appl. Math. Q., Volume 17 (2009), pp. 175-187

[22] Li, M. Y.; Shuai, Z. S. Global-stability problem for coupled systems of differential equations on networks, J. Diff. Equ., Volume 284 (2010), pp. 1-20

[23] Muroya, Y. Practical monotonous iterations for nonlinear equations, Mem. Fac. Sci. Kyushu Univ. A., Volume 22 (1968), pp. 56-73

[24] Muroya, Y.; Enatsu, Y.; Kuniya, T. Global stability of extended multi-group SIR epidemic models with patches through migration and cross patch infection, Acta Math. Sci., Volume 33 (2013), pp. 341-361

[25] Muroya, Y.; Li, H.; Kuniya, T. Complete global analysis of an SIRS epidemic model with graded cure rate and incomplete recovery rate, J. Math. Anal. Appl., Volume 410 (2014), pp. 719-732

[26] Nakata, Y.; Röst, G. Global analysis for spread of infectious diseases via transportation networks, J. Math. Biol., Volume 70 (2015), pp. 1411-1456

[27] Ortega, J.; Rheinboldt, W. Monotone iterations for nonlinear equations with application to Gauss-Seidel methods, SIAM J. Numer. Anal., Volume 4 (1967), pp. 171-190

[28] Shu, H.; Fan, D.; Wei, J. Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission, Nonlinear Anal. Rral World Appl., Volume 13 (2012), pp. 1581-1592

[29] Sun, R. Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence, Comput. Math. Appl., Volume 60 (2010), pp. 2286-2291

[30] Y. Takeuchi Cooperative system theory and global stability of diffusion models, Acta. Appl. Math., Volume 14 (1989), pp. 49-57

[31] Driessche, P. V. D.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., Volume 180 (2002), pp. 29-48

[32] Wang, J.; Takeuchi, Y.; Liu, S. A multi-group SVEIR epidemic model with distributed delay and vaccination, Int. J. Biomath., Volume 2012 (2012), pp. 1-18

[33] Wang, J.; Zu, J.; Liu, X.; Huang, G.; Zhang, J. Global dynamics of a multi-group epidemic model with general relapse distribution and nonlinear incidence rate, J. Biol. Syst., Volume 20 (2012), pp. 235-258

[34] Wang, W.; Chen, L.; Z. Lu Global stability of a population dispersal in a two-patch environment, Dynam. Systems Appl., Volume 6 (1997), pp. 207-216

[35] Wang, J.; Liu, X.; Pang, J.; Hou, D. Global dynamics of a multi-group epidemic model with general exposed distribution and relapse, Osaka J. Math., Volume 52 (2015), pp. 117-138

[36] Wang, W.; X. Q. Zhao An epidemic model in a patchy environment, Math. Biosci., Volume 190 (2004), pp. 97-112

[37] Xu, R.; Ma, Z. Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal. Real World Appl., Volume 10 (2009), pp. 3175-3189

[38] Yuan, Z.; Wang, L. Global stability of epidemiological models with group mixing and nonlinear incidence rates, Nonlinear Anal. Real World Appl., Volume 11 (2010), pp. 995-1004

[39] Yuan, Z.; Zou, X. Global threshold property in an epidemic model for disease with latency spreading in a heterogeneous host population, Nonlinear Anal. Real World Appl., Volume 11 (2010), pp. 3479-3490

[40] Zhao, X. Q.; Jing, Z. J. Global asymptotic behavior in some cooperative systems of functional differential equations, Canad. Appl. Math. Quart., Volume 4 (1996), pp. 421-444

Cité par Sources :