Existence of an optimal control for fractional stochastic partial neutral integro-differential equations with infinite delay
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 557-577.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we study optimal control problems governed by fractional stochastic partial neutral functional integro-differential equations with infinite delay in Hilbert spaces. We prove an existence result of mild solutions by using the fractional calculus, stochastic analysis theory, and fixed point theorems with the properties of analytic α-resolvent operators. Next, we derive the existence conditions of optimal pairs of these systems. Finally an example of a nonlinear fractional stochastic parabolic optimal control system is worked out in detail.
DOI : 10.22436/jnsa.008.05.10
Classification : 34G25, 34H05, 60H15, 26A33, 93E20
Keywords: Fractional stochastic partial neutral functional integro-differential equations, optimal controls, infinite delay, analytic α-resolvent operator, fixed point theorem.

Yan, Zuomao 1 ; Lu, Fangxia 2

1 School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
2 Department of Mathematics,, Hexi University, Zhangye, Gansu 734000, P. R. China
@article{JNSA_2015_8_5_a9,
     author = {Yan, Zuomao and Lu, Fangxia},
     title = {Existence of an optimal control  for  fractional  stochastic partial neutral integro-differential equations with  infinite delay},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {557-577},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2015},
     doi = {10.22436/jnsa.008.05.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.10/}
}
TY  - JOUR
AU  - Yan, Zuomao
AU  - Lu, Fangxia
TI  - Existence of an optimal control  for  fractional  stochastic partial neutral integro-differential equations with  infinite delay
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 557
EP  - 577
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.10/
DO  - 10.22436/jnsa.008.05.10
LA  - en
ID  - JNSA_2015_8_5_a9
ER  - 
%0 Journal Article
%A Yan, Zuomao
%A Lu, Fangxia
%T Existence of an optimal control  for  fractional  stochastic partial neutral integro-differential equations with  infinite delay
%J Journal of nonlinear sciences and its applications
%D 2015
%P 557-577
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.10/
%R 10.22436/jnsa.008.05.10
%G en
%F JNSA_2015_8_5_a9
Yan, Zuomao; Lu, Fangxia. Existence of an optimal control  for  fractional  stochastic partial neutral integro-differential equations with  infinite delay. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 557-577. doi : 10.22436/jnsa.008.05.10. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.10/

[1] O. P. Agrawal A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dynam., Volume 38 (2004), pp. 323-337

[2] Agarwal, R. P.; Santos, J. P. C.; Cuevas, C. Analytic resolvent operator and existence results for fractional order evolutionary integral equations, J. Abstr. Differ. Equ. Appl., Volume 2 (2012), pp. 26-47

[3] N. U. Ahmed Existence of optimal controls for a general class of impulsive systems on Banach spaces, SIAM J. Control Optim., Volume 42 (2003), pp. 669-685

[4] Ahmed, N. U. Relatively optimal filtering on a Hilbert space for measure driven stochastic systems, Nonlinear Anal., Volume 72 (2010), pp. 3695-3706

[5] Ahmed, N. U. Existence of optimal output feedback control law for a class of uncertain infinite dimensional stochastic systems: a direct approach, Evol. Equ. Control Theory, Volume 1 (2012), pp. 235-250

[6] Ahmed, N. U. Stochastic neutral evolution equations on Hilbert spaces with partially observed relaxed control and their necessary conditions of optimality, Nonlinear Anal., Volume 101 (2014), pp. 66-79

[7] Bismut, J-M. On optimal control of linear stochastic equations with a linear-quadratic criterion, SIAM J. Control Optim., Volume 15 (1977), pp. 1-4

[8] Brzeźniak, Z.; R. Serrano Optimal relaxed control of dissipative stochastic partial differential equations in Banach spaces, SIAM J. Control Optim., Volume 51 (2013), pp. 2664-2703

[9] Prato, G. Da; J. Zabczyk Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992

[10] Andrade, B. de; J. P. C. Santos Existence of solutions for a fractional neutral integro-differential equation with unbounded delay, Electron. J. Differential Equations, Volume 2012 (2012), pp. 1-13

[11] El-Borai, M. M. Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fractals, Volume 14 (2002), pp. 433-440

[12] El-Borai, M. M.; EI-Nadi, K. E-S.; H. A. Fouad On some fractional stochastic delay differential equations, Comput. Math. Appl., Volume 59 (2010), pp. 1165-1170

[13] Hale, J. K.; Kato, J. Phase spaces for retarded equations with infinite delay, Funkcial. Ekvac., Volume 21 (1978), pp. 11-41

[14] Hino, Y.; Murakami, S.; Naito, T. Functional-Differential Equations with Infinite Delay, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1991

[15] Marle, C. M. Measures et Probabilités, Hermann, Paris, France, 1974

[16] Meng, Q.; Shi, P. Stochastic optimal control for backward stochastic partial differential systems, J. Math. Anal. Appl., Volume 402 (2013), pp. 758-771

[17] Mophou, G. M. Optimal control of fractional diffusion equation, Comput. Math. Appl., Volume 61 (2011), pp. 68-78

[18] Øksendal, B.; Sulem, A. Applied Stochastic Control of Jump Diffusions, Springer-Verlag, Berlin, 2007

[19] Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983

[20] I. Podlubny Fractional Differential Equations, Mathematics in Sciences and Engineering, Academic Press, San Diego, 1999

[21] Sadovskii, B. N. On a fixed point principle, Funct. Anal. Appl., Volume 1 (1967), pp. 151-153

[22] Sakthivel, R.; Ganesh, R.; Suganya, S. Approximate controllability of fractional neutral stochastic system with infinite delay, Rep. Math. Phys., Volume 70 (2012), pp. 291-311

[23] C. Tudor Optimal control for semilinear stochastic evolution equations, Appl. Math. Optim., Volume 20 (1989), pp. 319-331

[24] Wang, J.; Zhou, Y.; Medved, M. On the solvability and optimal controls of fractional integrodifferential evolution systems with infinite delay, J. Optim. Theory Appl., Volume 152 (2012), pp. 31-50

[25] Wang, J.; Zhou, Y.; Wei, W.; Xu, H. Nonlocal problems for fractional integrodifferential equations via fractional operators and optimal controls, Comput. Math. Appl., Volume 62 (2011), pp. 1427-1441

[26] Yan, Z.; Zhang, H. Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with state-dependent delay, Electron. J. Differential Equations, Volume 2013 (2013), pp. 1-29

[27] Zhou, J.; Liu, B. Optimal control problem for stochastic evolution equations in Hilbert spaces, Internat. J. Control, Volume 83 (2010), pp. 1771-1784

[28] Zhu, X.; J. Zhou Infinite horizon optimal control of stochastic delay evolution equations in Hilbert spaces, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-14

Cité par Sources :