Fixed point theorems for $\alpha-\beta-\psi$-contractive mappings in partially ordered sets
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 518-528.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce a new concept of $\alpha-\beta-\psi$-contractive type mappings and construct some fixed point theorems for such mappings in metric spaces endowed with partial order. Moreover, we use fixed point theorems to find a solution for the first-order boundary value differential equation.
DOI : 10.22436/jnsa.008.05.07
Classification : 47H10, 34A12
Keywords: Fixed point, \(\alpha-\beta-\psi\)-contractive mappings, partially ordered sets, lower and upper solutions.

Asgari, Mohammad Sadegh 1 ; Badehian, Ziad 1

1 Department of Mathematics, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
@article{JNSA_2015_8_5_a6,
     author = {Asgari, Mohammad Sadegh and Badehian, Ziad},
     title = {Fixed point theorems for \(\alpha-\beta-\psi\)-contractive mappings in partially ordered sets},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {518-528},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2015},
     doi = {10.22436/jnsa.008.05.07},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.07/}
}
TY  - JOUR
AU  - Asgari, Mohammad Sadegh
AU  - Badehian, Ziad
TI  - Fixed point theorems for \(\alpha-\beta-\psi\)-contractive mappings in partially ordered sets
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 518
EP  - 528
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.07/
DO  - 10.22436/jnsa.008.05.07
LA  - en
ID  - JNSA_2015_8_5_a6
ER  - 
%0 Journal Article
%A Asgari, Mohammad Sadegh
%A Badehian, Ziad
%T Fixed point theorems for \(\alpha-\beta-\psi\)-contractive mappings in partially ordered sets
%J Journal of nonlinear sciences and its applications
%D 2015
%P 518-528
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.07/
%R 10.22436/jnsa.008.05.07
%G en
%F JNSA_2015_8_5_a6
Asgari, Mohammad Sadegh; Badehian, Ziad. Fixed point theorems for \(\alpha-\beta-\psi\)-contractive mappings in partially ordered sets. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 518-528. doi : 10.22436/jnsa.008.05.07. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.07/

[1] Agarwal, R. P.; El-Gebeily, M. A.; O'Regan, D. Generalized contractions in partially ordered metric spaces , Appl. Anal., Volume 87 (2008), pp. 109-116

[2] Altun, I.; H. Simsek Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory Appl., Volume 2010 (2010), pp. 1-17

[3] Beg, I.; Butt, A. R. Fixed point for set-valued mappings satisfying an implicit relation in partially ordered metric spaces, Nonlinear Anal., Volume 71 (2009), pp. 3699-3704

[4] Berinde, V.; Vetro, F. Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory Appl., Volume 2012 (2012), pp. 1-8

[5] Ćirić, Lj.; Cakić, N.; Rajović, M.; J. Ume Monotone Generalized Nonlinear Contractions in Partially Ordered Metric Spaces, Fixed Point Theory Appl., Volume 2008 (2008), pp. 1-11

[6] Cosentino, M.; Salimi, P.; Vetro, P. Fixed point results on metric-type spaces, Acta Math. Sci. Ser. B Engl. Ed., Volume 34 (2014), pp. 1237-1253

[7] Harjani, J.; K. Sadarangani Fixed point theorems for weakly contractive mappings in partially ordered sets, Non- linear Anal., Volume 71 (2009), pp. 3403-3410

[8] Harjani, J.; Sadarangani, K. Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal., Volume 72 (2010), pp. 1188-1197

[9] Kumam, P.; Vetro, C.; Vetro, F. Fixed points for weak \(\alpha-\psi\)-contractions in partial metric spaces, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-9

[10] Ladde, G.; Lakshmikantham, V.; A. Vatsala Monotone iterative techniques for nonlinear differential equations, Monographs, Advanced Texts and Surveys in Pure and Applied Mathematics, Pitman (Advanced Publishing Program), Boston, 1985

[11] Nashine, H. K.; Samet, B. Fixed point results for mappings satisfying \(\alpha-\psi\)-weakly contractive condition in partially ordered metric spaces, Nonlinear Anal., Volume 74 (2011), pp. 2201-2209

[12] Nieto, J. J.; Pouso, R. L.; Rodríguez-López, R. Fixed point theorems in ordered abstract spaces, Proc. Amer. Math. Soc., Volume 137 (2007), pp. 2505-2517

[13] Nieto, J. J.; R. Rodríguez-López Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, Volume 22 (2005), pp. 223-239

[14] Nieto, J. J.; Rodríguez-López, R. Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin. (Engl. Ser.), Volume 23 (2007), pp. 2205-2212

[15] O'Regan, D.; Petruşel, A. Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl., Volume 341 (2008), pp. 1241-1252

[16] Paesano, D.; Vetro, P. Common fixed Points in a partially ordered partial metric space, Int. J. Anal., Volume 2013 (2013), pp. 1-8

[17] Ran, A. C. M.; Reurings, M. C. B. A fixed point theorem in partially ordered sets and some applications to matrix equations , Proc. Amer. Math. Soc., Volume 132 (2003), pp. 1435-1443

[18] Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for \(\alpha-\psi\)-contractive type mappings, Nonlinear Anal., Volume 75 (2012), pp. 2154-2165

[19] Turkoglu, D.; Binbasioglu, D. Some Fixed-Point Theorems for Multivalued Monotone Mappings in Ordered Uniform Space, Fixed Point Theory Appl., Volume 2011 (2011), pp. 1-12

[20] Zeidler, E. Nonlinear functional analysis and its applications, Vol. I, Springer, New York, 1986

Cité par Sources :