Dynamics of a Harvested Logistic Type Model with Delay and Piecewise Constant Argument
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 507-517.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, a harvested logistic equation with delay and piecewise constant argument of generalized type is addressed. Both discrete and piecewise constant delays are incorporated into the logistic equation for investigation. Existence, boundedness of positive solutions and permanence are studied for the proposed logistic model.
DOI : 10.22436/jnsa.008.05.06
Classification : 34K12, 92D25
Keywords: Delayed logistic equation, piecewise constant argument of generalized type, boundedness, permanence, harvesting.

Aruğaslan, Duygu 1

1 Department of Mathematics, Süleyman Demirel University, 32260, Isparta, Turkey
@article{JNSA_2015_8_5_a5,
     author = {Aru\u{g}aslan, Duygu},
     title = {Dynamics of a {Harvested} {Logistic} {Type} {Model} with {Delay} and {Piecewise} {Constant} {Argument}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {507-517},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2015},
     doi = {10.22436/jnsa.008.05.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.06/}
}
TY  - JOUR
AU  - Aruğaslan, Duygu
TI  - Dynamics of a Harvested Logistic Type Model with Delay and Piecewise Constant Argument
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 507
EP  - 517
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.06/
DO  - 10.22436/jnsa.008.05.06
LA  - en
ID  - JNSA_2015_8_5_a5
ER  - 
%0 Journal Article
%A Aruğaslan, Duygu
%T Dynamics of a Harvested Logistic Type Model with Delay and Piecewise Constant Argument
%J Journal of nonlinear sciences and its applications
%D 2015
%P 507-517
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.06/
%R 10.22436/jnsa.008.05.06
%G en
%F JNSA_2015_8_5_a5
Aruğaslan, Duygu. Dynamics of a Harvested Logistic Type Model with Delay and Piecewise Constant Argument. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 507-517. doi : 10.22436/jnsa.008.05.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.06/

[1] Akhmet, M. U. Integral manifolds of differential equations with piecewise constant argument of generalized type, Nonlinear Anal., Volume 66 (2007), pp. 367-383

[2] Akhmet, M. U. On the reduction principle for differential equations with piecewise constant argument of generalized type, J. Math. Anal. Appl., Volume 336 (2007), pp. 646-663

[3] M. U. Akhmet Stability of differential equations with piecewise constant arguments of generalized type, Nonlinear Anal., Volume 68 (2008), pp. 794-803

[4] Akhmet, M. U.; Aruğaslan, D.; Liu, X. Permanence of nonautonomous ratio-dependent predator-prey systems with piecewise constant argument of generalized type, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Volume 15 (2008), pp. 37-51

[5] Akhmet, M. U. Asymptotic behavior of solutions of differential equations with piecewise constant arguments, Appl. Math. Lett., Volume 21 (2008), pp. 951-956

[6] Akhmet, M. U.; Aruğaslan, D. Lyapunov-Razumikhin method for differential equations with piecewise constant argument , Discrete Contin. Dyn. Syst., Volume 25 (2009), pp. 457-466

[7] Akhmet, M. U.; Aruğaslan, D.; Yılmaz, E. Stability in cellular neural networks with a piecewise constant argument, J. Comput. Appl. Math., Volume 233 (2010), pp. 2365-2373

[8] Akhmet, M. U.; Aruğaslan, D.; Yılmaz, E. Method of Lyapunov functions for differential equations with piecewise constant delay, J. Comput. Appl. Math., Volume 235 (2011), pp. 4554-4560

[9] Akhmet, M. Nonlinear Hybrid Continuous/Discrete-Time Models , Atlantis Press, Paris, 2011

[10] M. Akhmet Almost periodic solutions of second order neutral functional differential equations with piecewise constant argument, Discontin. Nonlinearity Complex, Volume 2 (2013), pp. 369-388

[11] Akhmet, M. U. Quasilinear retarded differential equations with functional dependence on piecewise constant argument, Commun. Pure Appl. Anal., Volume 13 (2014), pp. 929-947

[12] Binda, O.; Pierre, M. Asymptotic expansion for a delay differential equation with continuous and piecewise constant arguments, Funkcial. Ekvac, Volume 50 (2007), pp. 421-448

[13] Cooke, K. L.; Wiener, J. Retarded differential equations with piecewise constant delays, J. Math. Anal. Appl., Volume 99 (1984), pp. 265-297

[14] Cui, J.; H.-Xu. Li Delay differential logistic equation with linear harvesting, Nonlinear Anal. Real World Appl., Volume 8 (2007), pp. 1551-1560

[15] Dhar, J.; Sharma, A. K.; Tegar, S. The role of delay in digestion of plankton by fish population: a fishery model, J. Nonlinear Sci. Appl., Volume 1 (2008), pp. 13-19

[16] R. Levins Some demographic and genetic consequences of environmental heterogeneity for biological control , Bull. Entomology Soc. America, Volume 15 (1969), pp. 237-240

[17] Matsunaga, H.; Hara, T.; Sakata, S. Global attractivity for a logistic equation with piecewise constant argument, Nonlinear Differential Equations Appl., Volume 8 (2001), pp. 45-52

[18] Y. Muroya Permanence, contractivity and global stability in logistic equations with general delays, J. Math. Anal. Appl., Volume 302 (2005), pp. 389-401

[19] Seifert, G. Second-order neutral delay-differential equations with piecewise constant time dependence, J. Math. Anal. Appl., Volume 281 (2003), pp. 1-9

[20] Wang, Z.; Wu, J. The stability in a logistic equation with piecewise constant arguments, Differential Equations Dynam. Systems, Volume 14 (2006), pp. 179-193

[21] Wiener, J.; Lakshmikantham, V. A damped oscillator with piecewise constant time delay , Nonlinear Stud., Volume 7 (2000), pp. 78-84

[22] Yang, X. Existence and exponential stability of almost periodic solution for cellular neural networks with piecewise constant argument, Acta Math. Appl. Sin., Volume 29 (2006), pp. 789-800

Cité par Sources :