Binary Bargmann symmetry constraint associated with $3\times 3$ discrete matrix spectral problem
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 496-506.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Based on the nonlinearization technique, a binary Bargmann symmetry constraint associated with a new discrete $3\times 3$ matrix eigenvalue problem, which implies that there exist infinitely many common commuting symmetries and infinitely many common commuting conserved functionals, is proposed. A new symplectic map of the Bargmann type is obtained through binary nonlinearization of the discrete eigenvalue problem and its adjoint one. The generating function of integrals of motion is obtained, by which the symplectic map is further proved to be completely integrable in the Liouville sense.
DOI : 10.22436/jnsa.008.05.05
Classification : 35Q51, 37J15
Keywords: Discrete Hamiltonian structure, binary Bargmann symmetry constraint, finite-dimensional integrable system .

Li, Xin-Yue 1 ; Zhao, Qiu-Lan 1 ; Li, Yu-Xia 2 ; Dong, Huan-He 1

1 College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, P. R. China
2 Shandong Key Laboratory for Robot and Intelligent Technology, Qingdao 266590, P. R. China
@article{JNSA_2015_8_5_a4,
     author = {Li, Xin-Yue and Zhao, Qiu-Lan and Li, Yu-Xia and Dong, Huan-He},
     title = {Binary {Bargmann} symmetry constraint associated with \(3\times 3\) discrete matrix spectral problem},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {496-506},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2015},
     doi = {10.22436/jnsa.008.05.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.05/}
}
TY  - JOUR
AU  - Li, Xin-Yue
AU  - Zhao, Qiu-Lan
AU  - Li, Yu-Xia
AU  - Dong, Huan-He
TI  - Binary Bargmann symmetry constraint associated with \(3\times 3\) discrete matrix spectral problem
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 496
EP  - 506
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.05/
DO  - 10.22436/jnsa.008.05.05
LA  - en
ID  - JNSA_2015_8_5_a4
ER  - 
%0 Journal Article
%A Li, Xin-Yue
%A Zhao, Qiu-Lan
%A Li, Yu-Xia
%A Dong, Huan-He
%T Binary Bargmann symmetry constraint associated with \(3\times 3\) discrete matrix spectral problem
%J Journal of nonlinear sciences and its applications
%D 2015
%P 496-506
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.05/
%R 10.22436/jnsa.008.05.05
%G en
%F JNSA_2015_8_5_a4
Li, Xin-Yue; Zhao, Qiu-Lan; Li, Yu-Xia; Dong, Huan-He. Binary Bargmann symmetry constraint associated with \(3\times 3\) discrete matrix spectral problem. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 496-506. doi : 10.22436/jnsa.008.05.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.05/

[1] Antonowicz, M.; S. Wojciechowski How to construct finite-dimensional bi-Hamiltonian systems from soliton equations: Jacobi integrable potentials, J. Math. Phys., Volume 33 (1992), pp. 2115-2125

[2] Blaszak, M.; K. Marciniak R-matrix approach to lattice integrable systems, J. Math. Phys., Volume 35 (1994), pp. 4661-4682

[3] Cao, C. W. Nonlinearization of the Lax system for AKNS hierarchy, Sci. China Ser. A, Volume 33 (1990), pp. 528-536

[4] Dong, H. H.; Su, J.; Yi, F. J.; Zhang, T. Q. New Lax pairs of the Toda lattice and the nonlinearization under a higher-order Bargmann constraint, J. Math. Phys., Volume 53 (2012), pp. 1-18

[5] Fokas, A. S.; Anderson, R. L. On the use of isospectral eigenvalue problems for obtaining hereditary symmetries for Hamiltonian systems, J. Math. Phys., Volume 23 (1982), pp. 1066-1073

[6] Fan, E. G.; Y. C. Hon Super extension of Bell polynomials with applications to supersymmetric equations, J. Math. Phys., Volume 53 (2012), pp. 13503-13520

[7] Geng, X. G. Finite-dimensional discrete systems and integrable systems through nonlinearization of the discrete eigenvalue problem, J. Math. Phys., Volume 34 (1993), pp. 805-817

[8] Hu, X. B.; Wang, D. L.; Tan, Hon-Wah Lax pairs and Bäcklund transformations for a coupled Ramani equation and its related system, Appl. Math. Lett., Volume 13 (2000), pp. 45-48

[9] Li, Y. S.; Ma, W. X. Binary nonlinearization of AKNS spectral problem under higher-order symmetry constraints, Chaos Solitons Fractals, Volume 11 (2000), pp. 697-710

[10] Li, X. Y.; Li, X. J.; Li, Y. X. The Liouville integrable lattice equations associated with a discrete three-by-three matrix spectral problem, Internat. J. Modern Phys. B, Volume 25 (2011), pp. 1251-1261

[11] Li, X. Y.; Zhao, Q. L.; Li, Y. X. A new integrable symplectic map for 4-field Blaszak-Marciniak lattice equations, Commun. Nonlinear Sci. Numer. Simul., Volume 19 (2014), pp. 2324-2333

[12] W. X. Ma Symmetry constraint of MKdV equations by binary nonlinearization, Physica A, Volume 219 (1995), pp. 467-481

[13] Ma, W. X.; Geng, X. G. Bäcklund transformations of soliton systems from symmetry constraints, CRM Proc. Lecture Notes, Volume 29 (2001), pp. 313-323

[14] Ma, W. X.; W. Strampp An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems , Phys. Lett. A, Volume 185 (1994), pp. 277-286

[15] Ma, W. X.; Fuchssteiner, B.; W. Oevel A three-by-three matrix spectral problem for AKNS hierarchy and its binary nonlinearization, Physica A, Volume 233 (1996), pp. 331-354

[16] W. X. Ma Binary Bargmann symmetry constraints of soliton equations, Nonlinear Anal., Volume 47 (2001), pp. 5199-5211

[17] Ma, W. X.; R. G. Zhou Binary nonlinearization of spectral problems of the perturbation AKNS systems , Chaos Solitons Fractals, Volume 13 (2002), pp. 1451-1463

[18] Ma, W. X.; Zhou, Z. X. Binary symmetry constraints of N-wave interaction equations in 1+1 and 2+1 dimensions , J. Math. Phys., Volume 42 (2001), pp. 4345-4382

[19] Ma, W. X.; Abdeljabbar, A. A bilinear Bäcklund transformation of a (3+1)-dimensional generalized KP equation, Appl. Math. Lett., Volume 25 (2012), pp. 1500-1504

[20] Ma, W. X. Bilinear equations and resonant solutions characterized by Bell polynomials, Rep. Math. Phys., Volume 72 (2013), pp. 41-56

[21] Ma, W. X.; Zhang, Y.; Tang, Y. N.; Tu, J. Y. Hirota bilinear equations with linear subspaces of solutions, Appl. Math. Comput., Volume 218 (2012), pp. 7174-7183

[22] Qiao, Z. J. Integrable Hierarchy, \(3\times 3\) Constrained Systems, and Parametric Solutions, Acta Appl. Math., Volume 83 (2004), pp. 199-220

[23] Wu, Y. T.; Geng, X. G. A new integrable symplectic map associated with lattice equations, J. Math. Phys., Volume 37 (1996), pp. 2338-2345

[24] Xu, X. X. Factorization of a hierarchy of the lattice soliton equations from a binary Bargmann symmetry constraint, Nonlinear Anal., Volume 61 (2005), pp. 1225-1233

[25] Xu, Y.; Zhou, R. G. Integrable decompositions of a symmetric matrix Kaup-Newell equation and a symmetric matrix derivative nonlinear Schrödinger equation, Appl. Math. Comput., Volume 219 (2013), pp. 4551-4559

[26] R. G. Zhou Integrable Rosochatius deformations of the restricted soliton flows, J. Math. Phys., Volume 48 (2007), pp. 1-17

[27] Zhang, Y. Positons, negatons and complexitons of the mKdV equation with non-uniformity terms, Appl. Math. Comput., Volume 217 (2010), pp. 1463-1469

[28] Zhang, Y. F.; Han, Z.; Tam, Hon-Wah An integrable hierarchy and Darboux transformations, bilinear Bäcklund transformations of a reduced equation, Appl. Math. Comput., Volume 219 (2013), pp. 5837-5848

[29] Zhu, Z. N.; Zhu, Z. M.; Wu, X. N.; W. M. Xue New Matrix Lax Representation for a Blaszak-Marciniak Four-Field Lattice Hierarchy and Its Infinitely Many Conservation Laws, J. Phys. Soc. Japan, Volume 71 (2002), pp. 1864-1869

[30] Zeng, Y. B.; X. Cao Separation of variables for higher-order binary constrained flows of the Tu hierarchy , Adv. Math. (China), Volume 31 (2002), pp. 135-147

[31] Zhao, Q. L.; Li, Y. X.; Li, X. Y.; Sun, Y. P. The finite-dimensional super integrable system of a super NLS-mKdV equation, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 4044-4052

[32] Zhao, Q. L.; Y. X. Li The binary nonlinearization of generalized Toda hierarchy by a special choice of parameters, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 3257-3268

[33] Zhao, Q. L.; Li, X. Y.; F. S. Liu Two integrable lattice hierarchies and their respective Darboux transformations, Appl. Math. Comput., Volume 219 (2013), pp. 5693-5705

[34] Zhao, Q. L.; Wang, X. Z. The integrable coupling system of a \(3 \times 3\) discrete matrix spectral problem, Appl. Math. Comput., Volume 216 (2010), pp. 730-743

Cité par Sources :