Voir la notice de l'article provenant de la source International Scientific Research Publications
Li, Xin-Yue 1 ; Zhao, Qiu-Lan 1 ; Li, Yu-Xia 2 ; Dong, Huan-He 1
@article{JNSA_2015_8_5_a4, author = {Li, Xin-Yue and Zhao, Qiu-Lan and Li, Yu-Xia and Dong, Huan-He}, title = {Binary {Bargmann} symmetry constraint associated with \(3\times 3\) discrete matrix spectral problem}, journal = {Journal of nonlinear sciences and its applications}, pages = {496-506}, publisher = {mathdoc}, volume = {8}, number = {5}, year = {2015}, doi = {10.22436/jnsa.008.05.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.05/} }
TY - JOUR AU - Li, Xin-Yue AU - Zhao, Qiu-Lan AU - Li, Yu-Xia AU - Dong, Huan-He TI - Binary Bargmann symmetry constraint associated with \(3\times 3\) discrete matrix spectral problem JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 496 EP - 506 VL - 8 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.05/ DO - 10.22436/jnsa.008.05.05 LA - en ID - JNSA_2015_8_5_a4 ER -
%0 Journal Article %A Li, Xin-Yue %A Zhao, Qiu-Lan %A Li, Yu-Xia %A Dong, Huan-He %T Binary Bargmann symmetry constraint associated with \(3\times 3\) discrete matrix spectral problem %J Journal of nonlinear sciences and its applications %D 2015 %P 496-506 %V 8 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.05/ %R 10.22436/jnsa.008.05.05 %G en %F JNSA_2015_8_5_a4
Li, Xin-Yue; Zhao, Qiu-Lan; Li, Yu-Xia; Dong, Huan-He. Binary Bargmann symmetry constraint associated with \(3\times 3\) discrete matrix spectral problem. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 496-506. doi : 10.22436/jnsa.008.05.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.05/
[1] How to construct finite-dimensional bi-Hamiltonian systems from soliton equations: Jacobi integrable potentials, J. Math. Phys., Volume 33 (1992), pp. 2115-2125
[2] R-matrix approach to lattice integrable systems, J. Math. Phys., Volume 35 (1994), pp. 4661-4682
[3] Nonlinearization of the Lax system for AKNS hierarchy, Sci. China Ser. A, Volume 33 (1990), pp. 528-536
[4] New Lax pairs of the Toda lattice and the nonlinearization under a higher-order Bargmann constraint, J. Math. Phys., Volume 53 (2012), pp. 1-18
[5] On the use of isospectral eigenvalue problems for obtaining hereditary symmetries for Hamiltonian systems, J. Math. Phys., Volume 23 (1982), pp. 1066-1073
[6] Super extension of Bell polynomials with applications to supersymmetric equations, J. Math. Phys., Volume 53 (2012), pp. 13503-13520
[7] Finite-dimensional discrete systems and integrable systems through nonlinearization of the discrete eigenvalue problem, J. Math. Phys., Volume 34 (1993), pp. 805-817
[8] Lax pairs and Bäcklund transformations for a coupled Ramani equation and its related system, Appl. Math. Lett., Volume 13 (2000), pp. 45-48
[9] Binary nonlinearization of AKNS spectral problem under higher-order symmetry constraints, Chaos Solitons Fractals, Volume 11 (2000), pp. 697-710
[10] The Liouville integrable lattice equations associated with a discrete three-by-three matrix spectral problem, Internat. J. Modern Phys. B, Volume 25 (2011), pp. 1251-1261
[11] A new integrable symplectic map for 4-field Blaszak-Marciniak lattice equations, Commun. Nonlinear Sci. Numer. Simul., Volume 19 (2014), pp. 2324-2333
[12] Symmetry constraint of MKdV equations by binary nonlinearization, Physica A, Volume 219 (1995), pp. 467-481
[13] Bäcklund transformations of soliton systems from symmetry constraints, CRM Proc. Lecture Notes, Volume 29 (2001), pp. 313-323
[14] An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems , Phys. Lett. A, Volume 185 (1994), pp. 277-286
[15] A three-by-three matrix spectral problem for AKNS hierarchy and its binary nonlinearization, Physica A, Volume 233 (1996), pp. 331-354
[16] Binary Bargmann symmetry constraints of soliton equations, Nonlinear Anal., Volume 47 (2001), pp. 5199-5211
[17] Binary nonlinearization of spectral problems of the perturbation AKNS systems , Chaos Solitons Fractals, Volume 13 (2002), pp. 1451-1463
[18] Binary symmetry constraints of N-wave interaction equations in 1+1 and 2+1 dimensions , J. Math. Phys., Volume 42 (2001), pp. 4345-4382
[19] A bilinear Bäcklund transformation of a (3+1)-dimensional generalized KP equation, Appl. Math. Lett., Volume 25 (2012), pp. 1500-1504
[20] Bilinear equations and resonant solutions characterized by Bell polynomials, Rep. Math. Phys., Volume 72 (2013), pp. 41-56
[21] Hirota bilinear equations with linear subspaces of solutions, Appl. Math. Comput., Volume 218 (2012), pp. 7174-7183
[22] Integrable Hierarchy, \(3\times 3\) Constrained Systems, and Parametric Solutions, Acta Appl. Math., Volume 83 (2004), pp. 199-220
[23] A new integrable symplectic map associated with lattice equations, J. Math. Phys., Volume 37 (1996), pp. 2338-2345
[24] Factorization of a hierarchy of the lattice soliton equations from a binary Bargmann symmetry constraint, Nonlinear Anal., Volume 61 (2005), pp. 1225-1233
[25] Integrable decompositions of a symmetric matrix Kaup-Newell equation and a symmetric matrix derivative nonlinear Schrödinger equation, Appl. Math. Comput., Volume 219 (2013), pp. 4551-4559
[26] Integrable Rosochatius deformations of the restricted soliton flows, J. Math. Phys., Volume 48 (2007), pp. 1-17
[27] Positons, negatons and complexitons of the mKdV equation with non-uniformity terms, Appl. Math. Comput., Volume 217 (2010), pp. 1463-1469
[28] An integrable hierarchy and Darboux transformations, bilinear Bäcklund transformations of a reduced equation, Appl. Math. Comput., Volume 219 (2013), pp. 5837-5848
[29] New Matrix Lax Representation for a Blaszak-Marciniak Four-Field Lattice Hierarchy and Its Infinitely Many Conservation Laws, J. Phys. Soc. Japan, Volume 71 (2002), pp. 1864-1869
[30] Separation of variables for higher-order binary constrained flows of the Tu hierarchy , Adv. Math. (China), Volume 31 (2002), pp. 135-147
[31] The finite-dimensional super integrable system of a super NLS-mKdV equation, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 4044-4052
[32] The binary nonlinearization of generalized Toda hierarchy by a special choice of parameters, Commun. Nonlinear Sci. Numer. Simul., Volume 16 (2011), pp. 3257-3268
[33] Two integrable lattice hierarchies and their respective Darboux transformations, Appl. Math. Comput., Volume 219 (2013), pp. 5693-5705
[34] The integrable coupling system of a \(3 \times 3\) discrete matrix spectral problem, Appl. Math. Comput., Volume 216 (2010), pp. 730-743
Cité par Sources :