Voir la notice de l'article provenant de la source International Scientific Research Publications
Yao, Zhangsong 1 ; Zhu, Li-Jun 2 ; Liou, Yeong-Cheng 3
@article{JNSA_2015_8_5_a3, author = {Yao, Zhangsong and Zhu, Li-Jun and Liou, Yeong-Cheng}, title = {Strong convergence of a {Halpern-type} iteration algorithm for fixed point problems in {Banach} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {489-495}, publisher = {mathdoc}, volume = {8}, number = {5}, year = {2015}, doi = {10.22436/jnsa.008.05.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.04/} }
TY - JOUR AU - Yao, Zhangsong AU - Zhu, Li-Jun AU - Liou, Yeong-Cheng TI - Strong convergence of a Halpern-type iteration algorithm for fixed point problems in Banach spaces JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 489 EP - 495 VL - 8 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.04/ DO - 10.22436/jnsa.008.05.04 LA - en ID - JNSA_2015_8_5_a3 ER -
%0 Journal Article %A Yao, Zhangsong %A Zhu, Li-Jun %A Liou, Yeong-Cheng %T Strong convergence of a Halpern-type iteration algorithm for fixed point problems in Banach spaces %J Journal of nonlinear sciences and its applications %D 2015 %P 489-495 %V 8 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.04/ %R 10.22436/jnsa.008.05.04 %G en %F JNSA_2015_8_5_a3
Yao, Zhangsong; Zhu, Li-Jun; Liou, Yeong-Cheng. Strong convergence of a Halpern-type iteration algorithm for fixed point problems in Banach spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 489-495. doi : 10.22436/jnsa.008.05.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.04/
[1] Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 20 (1967), pp. 197-228
[2] Convergence of a Halpern-type iteration algorithm for a class of pseudocontractive mappings, Nonliear Anal., Volume 69 (2008), pp. 2286-2292
[3] Visco-resolvent algorithms for monotone operators and nonexpansive mappings, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 325-344
[4] Weak and strong convergence theorems for strictly pseudocontractions in Hilbert spaces, J. Math. Anal. Appl., Volume 329 (2007), pp. 336-346
[5] Convergence of paths for pseudocontractive mappings in Banach spaces, Proc. Amer. Math. Soc., Volume 128 (2000), pp. 3411-3419
[6] General variational inequalities, Appl. Math. Lett., Volume 1 (1988), pp. 119-121
[7] Some developments in general variational inequalities, Appl. Math. Comput., Volume 152 (2004), pp. 199-277
[8] Differentiable nonconvex functions and general variational inequalities, Appl. Math. Comput., Volume 199 (2008), pp. 623-630
[9] Self-adaptive projection algorithms for general variational inequalities, Appl. Math. Comput., Volume 151 (2004), pp. 659-670
[10] Some aspects of variational inequalities, J. Comput. Appl. Math., Volume 47 (1993), pp. 285-312
[11] Demiclosedness principle and convergence theorems for strictly pseudocontractive mappings of Browder-Petryshyn Type, J. Math. Anal. Appl., Volume 256 (2001), pp. 431-445
[12] Equivalence of variational inequalities with Wiener-Hopf equations, Proc. Amer. Math. Soc., Volume 111 (1991), pp. 339-346
[13] Formes bilineaires coercitives sur les ensembles convexes, C.R. Acad. Sci. Paris, Volume 258 (1964), pp. 4413-4416
[14] Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., Volume 2005 (2005), pp. 103-123
[15] Inequalities in Banach spaces with applications , Nonlinear Anal., Volume 16 (1991), pp. 1127-1138
[16] Viscosity approximation methods for non-expansive mappings, J. Math. Anal. Appl., Volume 298 (2004), pp. 279-291
[17] Variational inequalities with generalized monotone operators, Math. Operations Research, Volume 19 (1994), pp. 691-705
[18] Constructed nets with perturbations for equilibrium and fixed point problems, J. Inequal. Appl., Volume 2014 (2014), pp. 1-14
[19] Fixed points of pseudocontractive mappings by a projection method in Hilbert spaces, J. Nonlinear Convex Anal., Volume 14 (2013), pp. 785-794
[20] Coupling extragradient methods with CQ mathods for equilibrium points, pseudomontone variational inequalities and fixed points, Fixed Point Theory, Volume 15 (2014), pp. 311-324
[21] Strong convergence of approximated iterations for asymptotically pseudocontractive mappings, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-13
[22] Convergence theorems of fixed points for k-strict pseudocontractions in Hilbert spaces, Nonlinear Anal., Volume 69 (2008), pp. 456-462
Cité par Sources :