Strong convergence of a Halpern-type iteration algorithm for fixed point problems in Banach spaces
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 489-495.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we studied a Halpern-type iteration algorithm involving pseudo-contractive mappings for solving some variational inequality in a q-uniformly smooth Banach space. We show the studied algorithm has strong convergence under some mild conditions. Our result extends and improves many results in the literature.
DOI : 10.22436/jnsa.008.05.04
Classification : 47H05, 47H10, 47H17
Keywords: Halpern iterative algorithm, pseudocontractive mapping, fixed point, variational inequality

Yao, Zhangsong 1 ; Zhu, Li-Jun 2 ; Liou, Yeong-Cheng 3

1 School of Information Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China
2 School of Mathematics and Information Science, Beifang University of Nationalities, Yinchuan 750021, China
3 Department of Information Management, Cheng Shiu University, Kaohsiung 833, Taiwan;Center for General Education, Kaohsiung Medical University, Kaohsiung 807, Taiwan
@article{JNSA_2015_8_5_a3,
     author = {Yao, Zhangsong and Zhu, Li-Jun and Liou, Yeong-Cheng},
     title = {Strong convergence of a {Halpern-type} iteration algorithm for fixed point problems in {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {489-495},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2015},
     doi = {10.22436/jnsa.008.05.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.04/}
}
TY  - JOUR
AU  - Yao, Zhangsong
AU  - Zhu, Li-Jun
AU  - Liou, Yeong-Cheng
TI  - Strong convergence of a Halpern-type iteration algorithm for fixed point problems in Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 489
EP  - 495
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.04/
DO  - 10.22436/jnsa.008.05.04
LA  - en
ID  - JNSA_2015_8_5_a3
ER  - 
%0 Journal Article
%A Yao, Zhangsong
%A Zhu, Li-Jun
%A Liou, Yeong-Cheng
%T Strong convergence of a Halpern-type iteration algorithm for fixed point problems in Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2015
%P 489-495
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.04/
%R 10.22436/jnsa.008.05.04
%G en
%F JNSA_2015_8_5_a3
Yao, Zhangsong; Zhu, Li-Jun; Liou, Yeong-Cheng. Strong convergence of a Halpern-type iteration algorithm for fixed point problems in Banach spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 489-495. doi : 10.22436/jnsa.008.05.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.04/

[1] Browder, F. E.; Petryshyn, W. V. Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 20 (1967), pp. 197-228

[2] Chidume, C. O.; G. De Souza Convergence of a Halpern-type iteration algorithm for a class of pseudocontractive mappings, Nonliear Anal., Volume 69 (2008), pp. 2286-2292

[3] Li, P.; Kang, S. M.; Zhu, L. Visco-resolvent algorithms for monotone operators and nonexpansive mappings, J. Nonlinear Sci. Appl., Volume 7 (2014), pp. 325-344

[4] Marino, G.; Xu, H. K. Weak and strong convergence theorems for strictly pseudocontractions in Hilbert spaces, J. Math. Anal. Appl., Volume 329 (2007), pp. 336-346

[5] Morales, C. H.; Jung, J. S. Convergence of paths for pseudocontractive mappings in Banach spaces, Proc. Amer. Math. Soc., Volume 128 (2000), pp. 3411-3419

[6] Noor, M. A. General variational inequalities, Appl. Math. Lett., Volume 1 (1988), pp. 119-121

[7] Noor, M. A. Some developments in general variational inequalities, Appl. Math. Comput., Volume 152 (2004), pp. 199-277

[8] Noor, M. A. Differentiable nonconvex functions and general variational inequalities, Appl. Math. Comput., Volume 199 (2008), pp. 623-630

[9] Noor, M. A.; Noor, K. I. Self-adaptive projection algorithms for general variational inequalities, Appl. Math. Comput., Volume 151 (2004), pp. 659-670

[10] Noor, M. A.; Noor, K. I.; Rassias, Th. M. Some aspects of variational inequalities, J. Comput. Appl. Math., Volume 47 (1993), pp. 285-312

[11] Osilike, M. O.; Udomene, A. Demiclosedness principle and convergence theorems for strictly pseudocontractive mappings of Browder-Petryshyn Type, J. Math. Anal. Appl., Volume 256 (2001), pp. 431-445

[12] Shi, P. Equivalence of variational inequalities with Wiener-Hopf equations, Proc. Amer. Math. Soc., Volume 111 (1991), pp. 339-346

[13] Stampacchia, G. Formes bilineaires coercitives sur les ensembles convexes, C.R. Acad. Sci. Paris, Volume 258 (1964), pp. 4413-4416

[14] Suzuki, T. Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces, Fixed Point Theory Appl., Volume 2005 (2005), pp. 103-123

[15] Xu, H. K. Inequalities in Banach spaces with applications , Nonlinear Anal., Volume 16 (1991), pp. 1127-1138

[16] Xu, H. K. Viscosity approximation methods for non-expansive mappings, J. Math. Anal. Appl., Volume 298 (2004), pp. 279-291

[17] Yao, J. C. Variational inequalities with generalized monotone operators, Math. Operations Research, Volume 19 (1994), pp. 691-705

[18] Yao, Y.; Cho, Y. J.; Liou, Y. C.; Agarwal, R. P. Constructed nets with perturbations for equilibrium and fixed point problems, J. Inequal. Appl., Volume 2014 (2014), pp. 1-14

[19] Yao, Y.; Liou, Y. C.; C. C. Chyu Fixed points of pseudocontractive mappings by a projection method in Hilbert spaces, J. Nonlinear Convex Anal., Volume 14 (2013), pp. 785-794

[20] Yao, Y.; Liou, Y. C.; S. M. Kang Coupling extragradient methods with CQ mathods for equilibrium points, pseudomontone variational inequalities and fixed points, Fixed Point Theory, Volume 15 (2014), pp. 311-324

[21] Yao, Y.; Postolache, M.; Kang, S. M. Strong convergence of approximated iterations for asymptotically pseudocontractive mappings, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-13

[22] H. Y. Zhou Convergence theorems of fixed points for k-strict pseudocontractions in Hilbert spaces, Nonlinear Anal., Volume 69 (2008), pp. 456-462

Cité par Sources :