Voir la notice de l'article provenant de la source International Scientific Research Publications
Alomari, A. K. 1
@article{JNSA_2015_8_5_a2, author = {Alomari, A. K.}, title = {A novel solution for fractional chaotic {Chen} system}, journal = {Journal of nonlinear sciences and its applications}, pages = {478-488}, publisher = {mathdoc}, volume = {8}, number = {5}, year = {2015}, doi = {10.22436/jnsa.008.05.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.03/} }
TY - JOUR AU - Alomari, A. K. TI - A novel solution for fractional chaotic Chen system JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 478 EP - 488 VL - 8 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.03/ DO - 10.22436/jnsa.008.05.03 LA - en ID - JNSA_2015_8_5_a2 ER -
%0 Journal Article %A Alomari, A. K. %T A novel solution for fractional chaotic Chen system %J Journal of nonlinear sciences and its applications %D 2015 %P 478-488 %V 8 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.03/ %R 10.22436/jnsa.008.05.03 %G en %F JNSA_2015_8_5_a2
Alomari, A. K. A novel solution for fractional chaotic Chen system. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 478-488. doi : 10.22436/jnsa.008.05.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.03/
[1] The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation, Phys. Lett. A, Volume 361 (2007), pp. 478-483
[2] On the homotopy analysis method for the exact solutions of Helmholtz equation, Chaos Solitons Fractal, Volume 41 (2009), pp. 1873-1879
[3] Multiple solutions for fractional differential equations: Analytic approach, Appl. Math. Comput., Volume 219 (2013), pp. 8893-8903
[4] Adaptation of homotopy analysis method for the numeric-analytic solution of Chen system, Comm. Nonlinear Sci. Numer. Simul., Volume 14 (2009), pp. 2336-2346
[5] Homotopy analysis method for solving fractional Lorenz system, Comm. Nonlinear Sci. Numer. Simul., Volume 15 (2010), pp. 1864-1872
[6] Discrete Homotopy Analysis Method for Solving Linear Fuzzy Differential Equations, Adv. Environ. Biol., Volume 9 (2015), pp. 195-201
[7] Solving systems of ODEs by homotopy analysis method , Comm. Nonlinear Sci. Numer. Simul., Volume 13 (2008), pp. 2060-2070
[8] Application of multistage homotopy-perturbation method for the solutions of the Chen system , Nonlinear Anal. Real. World Appl., Volume 10 (2009), pp. 381-391
[9] Analysis of fractional differential equations, J. Math. Anal. Appl., Volume 265 (2002), pp. 229-248
[10] A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., Volume 29 (2002), pp. 3-22
[11] A method to solve Convection-Diffusion equation based on homotopy analysis method, J. Interpolat. Approx. Sci. Comput., Volume 2015 (2015), pp. 1-8
[12] An efficient applications of hes variational iteration method based on a reliable modification of Adomian algorithm for nonlinear boundary value problems , J. Nonlinear Sci. Appl., Volume 3 (2010), pp. 152-156
[13] On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder, Phys. Lett. A, Volume 361 (2007), pp. 316-322
[14] Homotopy solutions for a generalized second-grade fluid past a porous plate, Nonlinear Dyn., Volume 42 (2005), pp. 395-405
[15] Solving a system of nonlinear fractional differential equations using Adomian decomposition, J. Comput. Appl. Math., Volume 196 (2006), pp. 644-651
[16] Chaos in Chen’s system with a fractional order, Chaos Solitons Fractals, Volume 22 (2004), pp. 443-450
[17] The proposed homotopy analysis techniques for the solution of nonlinear problems, Ph.D. Dissertation. Shanghai Jiao Tong University, Shanghai (in English), 1992
[18] Beyond perturbation: Introduction to the homotopy analysis method, CRC Press, Chapman and Hall, Boca Raton, 2003
[19] Notes on the homotopy analysis method: Some definitions and theorems, Commun. Nonlinear Sci. Numer. Simul., Volume 14 (2009), pp. 983-997
[20] Existence of unbounded positive solutions for BVPs of singular fractional differential equations, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 281-293
[21] Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A., Volume 365 (2007), pp. 345-350
[22] Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Solitons Fractals, Volume 31 (2007), pp. 1248-1255
[23] On exact solution of Laplace equation with Dirichlet and Neumann boundary conditions by the homotopy analysis method, Phys. Lett. A., Volume 365 (2007), pp. 412-415
[24] Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order, Chaos Solitons Fractals, Volume 36 (2008), pp. 167-174
[25] Application of variational iteration method to nonlinear differential equation of fractional order , Int. J. Nonlinear Sci. Numer. Simul., Volume 7 (2006), pp. 27-34
[26] Fractional differential equations, Academic Press, New York, 1999
[27] Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Nonlinear Sci. Appl., Volume 1 (2008), pp. 123-131
[28] MHD rotating flow of a viscous fluid over a shrinking surface, Nonlinear Dyn., Volume 51 (2008), pp. 259-265
[29] Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput., Volume 131 (2002), pp. 517-529
[30] Existence and uniqueness of fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., Volume 1 (2008), pp. 206-212
[31] Positive solutions for Caputo fractional differential equations involving integral boundary conditions, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 99-109
[32] Extending synchronization scheme to chaotic fractional-order Chen systems, Physica A, Volume 370 (2006), pp. 279-285
[33] Positive solutions for singular coupled integral boundary value problems of nonlinear Hadamard fractional differential equations, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 110-129
[34] Synchronization in fractional-order differential systems, Phys. D., Volume 212 (2005), pp. 111-125
[35] Chaos synchronization of the fractional-order Chen’s system, Chaos Solitons Fractals, Volume 41 (2009), pp. 2733-2740
Cité par Sources :