A novel solution for fractional chaotic Chen system
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 478-488.

Voir la notice de l'article provenant de la source International Scientific Research Publications

A novel solution to the fraction chaotic Chen system is presented in this paper by using the step homotopy analysis method. This method yields a continuous solution in terms of a rapidly convergent infinite power series with easily computable terms. Moreover, the residual error of the SHAM solution is defined and computed for each time interval. Via the computing of the residual error we observe that the accuracy of the present method tends to $10^{-11}$ which is very high.
DOI : 10.22436/jnsa.008.05.03
Classification : 65P20, 26A33, 34A08
Keywords: Chaotic system, fractional Chen system, homotopy analysis method, step homotopy analysis method, residual error.

Alomari, A. K. 1

1 Department of Mathematics, Faculty of Science, Yarmouk University, 211-63 Irbid, Jordan
@article{JNSA_2015_8_5_a2,
     author = {Alomari, A. K.},
     title = {A novel solution for fractional chaotic {Chen} system},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {478-488},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2015},
     doi = {10.22436/jnsa.008.05.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.03/}
}
TY  - JOUR
AU  - Alomari, A. K.
TI  - A novel solution for fractional chaotic Chen system
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 478
EP  - 488
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.03/
DO  - 10.22436/jnsa.008.05.03
LA  - en
ID  - JNSA_2015_8_5_a2
ER  - 
%0 Journal Article
%A Alomari, A. K.
%T A novel solution for fractional chaotic Chen system
%J Journal of nonlinear sciences and its applications
%D 2015
%P 478-488
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.03/
%R 10.22436/jnsa.008.05.03
%G en
%F JNSA_2015_8_5_a2
Alomari, A. K. A novel solution for fractional chaotic Chen system. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 478-488. doi : 10.22436/jnsa.008.05.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.03/

[1] Abbasbandy, S. The application of homotopy analysis method to solve a generalized Hirota-Satsuma coupled KdV equation, Phys. Lett. A, Volume 361 (2007), pp. 478-483

[2] Alomari, A. K.; Noorani, M. S. M.; Nazar, R. On the homotopy analysis method for the exact solutions of Helmholtz equation, Chaos Solitons Fractal, Volume 41 (2009), pp. 1873-1879

[3] Alomari, A. K.; Awawdeh, F.; Tahat, N.; Ahmad, F. Bani; W . Shatanawi Multiple solutions for fractional differential equations: Analytic approach, Appl. Math. Comput., Volume 219 (2013), pp. 8893-8903

[4] Alomari, A. K.; Noorani, M. S. N.; Nazar, R. Adaptation of homotopy analysis method for the numeric-analytic solution of Chen system, Comm. Nonlinear Sci. Numer. Simul., Volume 14 (2009), pp. 2336-2346

[5] Alomari, A. K.; Noorani, M. S. N.; Nazar, R.; Li, C. P. Homotopy analysis method for solving fractional Lorenz system, Comm. Nonlinear Sci. Numer. Simul., Volume 15 (2010), pp. 1864-1872

[6] Araghi, M. A. F.; Fallahzadeh, A. Discrete Homotopy Analysis Method for Solving Linear Fuzzy Differential Equations, Adv. Environ. Biol., Volume 9 (2015), pp. 195-201

[7] Bataineh, A. S.; Noorani, M. S. N.; Hashim, I. Solving systems of ODEs by homotopy analysis method , Comm. Nonlinear Sci. Numer. Simul., Volume 13 (2008), pp. 2060-2070

[8] Chowdhury, M. S. H.; Hashim, I. Application of multistage homotopy-perturbation method for the solutions of the Chen system , Nonlinear Anal. Real. World Appl., Volume 10 (2009), pp. 381-391

[9] Diethelm, K.; Ford, N. J. Analysis of fractional differential equations, J. Math. Anal. Appl., Volume 265 (2002), pp. 229-248

[10] Diethelm, K.; Ford, N. J.; Freed, A. D. A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., Volume 29 (2002), pp. 3-22

[11] Fallahzadeh, A.; Shakibi, K. A method to solve Convection-Diffusion equation based on homotopy analysis method, J. Interpolat. Approx. Sci. Comput., Volume 2015 (2015), pp. 1-8

[12] Golbabai, A.; K. Sayevand An efficient applications of hes variational iteration method based on a reliable modification of Adomian algorithm for nonlinear boundary value problems , J. Nonlinear Sci. Appl., Volume 3 (2010), pp. 152-156

[13] Hayat, T.; Sajid, M. On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder, Phys. Lett. A, Volume 361 (2007), pp. 316-322

[14] Hayat, T.; Khan, M. Homotopy solutions for a generalized second-grade fluid past a porous plate, Nonlinear Dyn., Volume 42 (2005), pp. 395-405

[15] Jafari, H.; V. Daftardar-Gejji Solving a system of nonlinear fractional differential equations using Adomian decomposition, J. Comput. Appl. Math., Volume 196 (2006), pp. 644-651

[16] C, C. Li; Peng, G. Chaos in Chen’s system with a fractional order, Chaos Solitons Fractals, Volume 22 (2004), pp. 443-450

[17] Liao, S. The proposed homotopy analysis techniques for the solution of nonlinear problems, Ph.D. Dissertation. Shanghai Jiao Tong University, Shanghai (in English), 1992

[18] Liao, S. Beyond perturbation: Introduction to the homotopy analysis method, CRC Press, Chapman and Hall, Boca Raton, 2003

[19] Liao, S. Notes on the homotopy analysis method: Some definitions and theorems, Commun. Nonlinear Sci. Numer. Simul., Volume 14 (2009), pp. 983-997

[20] Y, Y. Liu; Shi, H. Existence of unbounded positive solutions for BVPs of singular fractional differential equations, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 281-293

[21] Momani, S.; Odibat, Z. Homotopy perturbation method for nonlinear partial differential equations of fractional order, Phys. Lett. A., Volume 365 (2007), pp. 345-350

[22] Momani, S.; Odibat, Z. Numerical comparison of methods for solving linear differential equations of fractional order, Chaos Solitons Fractals, Volume 31 (2007), pp. 1248-1255

[23] Inc, M. On exact solution of Laplace equation with Dirichlet and Neumann boundary conditions by the homotopy analysis method, Phys. Lett. A., Volume 365 (2007), pp. 412-415

[24] Odibat, Z.; Momani, S. Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order, Chaos Solitons Fractals, Volume 36 (2008), pp. 167-174

[25] Odibat, Z.; Momani, S. Application of variational iteration method to nonlinear differential equation of fractional order , Int. J. Nonlinear Sci. Numer. Simul., Volume 7 (2006), pp. 27-34

[26] Podlubny, I. Fractional differential equations, Academic Press, New York, 1999

[27] Qiu, T.; Z. Bai Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Nonlinear Sci. Appl., Volume 1 (2008), pp. 123-131

[28] Sajid, M.; Javed, T.; Hayat, T. MHD rotating flow of a viscous fluid over a shrinking surface, Nonlinear Dyn., Volume 51 (2008), pp. 259-265

[29] Shawagfeh, N. T. Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput., Volume 131 (2002), pp. 517-529

[30] Wang, T.; Xie, F. Existence and uniqueness of fractional differential equations with integral boundary conditions, J. Nonlinear Sci. Appl., Volume 1 (2008), pp. 206-212

[31] Wang, Y.; Yang, Y. Positive solutions for Caputo fractional differential equations involving integral boundary conditions, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 99-109

[32] Wanga, J.; Xionga, X.; Zhang, Y. Extending synchronization scheme to chaotic fractional-order Chen systems, Physica A, Volume 370 (2006), pp. 279-285

[33] Yang, W. Positive solutions for singular coupled integral boundary value problems of nonlinear Hadamard fractional differential equations, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 110-129

[34] Zhou, T. S.; Li, C. Synchronization in fractional-order differential systems, Phys. D., Volume 212 (2005), pp. 111-125

[35] Zhu, H.; Zhou, S.; He, Z. Chaos synchronization of the fractional-order Chen’s system, Chaos Solitons Fractals, Volume 41 (2009), pp. 2733-2740

Cité par Sources :