Singularity properties of one parameter lightlike hypersurfaces in Minkowski 4-space
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 467-477.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we give one parameter families of extrinsic differential geometries on spacelike curves in Minkowski 4-space. We investigate the nonlinear properties of one parameter lightlike hypersurfaces. Meanwhile, the classification of singularities to one parameter lightlike hypersurfaces is considered by singularity theory.
DOI : 10.22436/jnsa.008.05.02
Classification : 58K27, 53B50, 53A35
Keywords: Minkowski space, singularity, one parameter lightlike hypersurfaces, height function.

Sun, Jianguo 1 ; Pei, Donghe 2

1 School of Science, China University of Petroleum (east China), Qingdao, 266580, P. R. China
2 School of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, P. R. China
@article{JNSA_2015_8_5_a1,
     author = {Sun, Jianguo and Pei, Donghe},
     title = {Singularity properties of one parameter lightlike hypersurfaces in {Minkowski} 4-space},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {467-477},
     publisher = {mathdoc},
     volume = {8},
     number = {5},
     year = {2015},
     doi = {10.22436/jnsa.008.05.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.02/}
}
TY  - JOUR
AU  - Sun, Jianguo
AU  - Pei, Donghe
TI  - Singularity properties of one parameter lightlike hypersurfaces in Minkowski 4-space
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 467
EP  - 477
VL  - 8
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.02/
DO  - 10.22436/jnsa.008.05.02
LA  - en
ID  - JNSA_2015_8_5_a1
ER  - 
%0 Journal Article
%A Sun, Jianguo
%A Pei, Donghe
%T Singularity properties of one parameter lightlike hypersurfaces in Minkowski 4-space
%J Journal of nonlinear sciences and its applications
%D 2015
%P 467-477
%V 8
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.02/
%R 10.22436/jnsa.008.05.02
%G en
%F JNSA_2015_8_5_a1
Sun, Jianguo; Pei, Donghe. Singularity properties of one parameter lightlike hypersurfaces in Minkowski 4-space. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 5, p. 467-477. doi : 10.22436/jnsa.008.05.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.05.02/

[1] Bruce, A. Vacuum states in de Sitter space, Phys. Rev. D, Volume 32 (1985), pp. 3136-3149

[2] Bruce, J. W.; Giblin, P. J. Curves and singularities (2nd. ed.) , Cambridge Univ. Press, Cambridge, 1992

[3] Campanelli, M.; Lousto, C. O. Second order gauge invariant gravitational perturbations of a Kerr black hole, Phys. Rev. D, Volume 59 (1999), pp. 1-16

[4] Coleman, S.; R. E. Nirton Sigularities in the physical region, Il. Nuovo. Cimento., Volume 38 (1965), pp. 438-442

[5] Duggal, K. L.; D. H. Jin Null curves and hypersurfaces of semi-Riemannian manifolds, World Scientific, , 2007

[6] Fusho, T.; Izumiya, S. Lightlike surfaces of spacelike curves in de Sitter 3-space, J. Geom., Volume 88 (2008), pp. 19-29

[7] Hiscock, W. A. Models of evaporating black holes. II. Effects of the outgoing created radiation, Phys. Rev. D, Volume 23 (1981), pp. 2823-2827

[8] Ilarslan, K.; Boyacıoğlu, Ö. Position vectors of a timelike and a null helix in Minkowski 3-space , Chaos Solitons Fractals, Volume 38 (2008), pp. 1383-1389

[9] Mustafa, B. On the involutes of the spacelike curve with a timelike binormal in Minkowski 3-space, Internat. Math. Forum, Volume 31 (2009), pp. 1497-1509

[10] B. O'Neill Semi-Riemannian geomerty with applications to relativity, Academic Press, London, 1983

[11] Neraessian, A.; Ramos, E. Massive spinning particles and the geometry of null curves, Phys. Lett. B, Volume 445 (1998), pp. 123-128

[12] Pei, D. H.; Sano, T. The focal developable and the binormal indicatrix of a nonlightlike curve in Minkowski 3-space, Tokyo J. Math., Volume 23 (2000), pp. 211-225

[13] Sun, J. G.; D. H. Pei Families of Gauss indicatrices on Lorentzian hypersurfaces in pseudo-spheres in semi- Euclidean 4 space, J. Math. Anal. Appl., Volume 400 (2013), pp. 133-142

[14] Sun, J. G.; Pei, D. H. Null surfaces of null curves on 3-null cone, Phys. Lett. A, Volume 378 (2014), pp. 1010-1016

[15] Sun, J. G.; Pei, D. H. Some new properties of null curves on 3-null cone and unit semi-Euclidean 3-spheres, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 275-284

[16] Tian, G. H.; Zhao, Z.; C. B. Liang Proper acceleration’ of a null geodesic in curved spacetime, Classical Quantum Gravity, Volume 20 (2003), pp. 1-4329

[17] H. Urbantke Local differential geometry of null curves in conformally flat space-time , J. Math. Phys., Volume 30 (1989), pp. 2238-2245

Cité par Sources :