Voir la notice de l'article provenant de la source International Scientific Research Publications
Wang, Zhihua 1
@article{JNSA_2015_8_4_a11, author = {Wang, Zhihua}, title = {Asymptotic aspect of {Jensen} and {Jensen} type functional equations in multi-normed spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {402-411}, publisher = {mathdoc}, volume = {8}, number = {4}, year = {2015}, doi = {10.22436/jnsa.008.04.12}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.12/} }
TY - JOUR AU - Wang, Zhihua TI - Asymptotic aspect of Jensen and Jensen type functional equations in multi-normed spaces JO - Journal of nonlinear sciences and its applications PY - 2015 SP - 402 EP - 411 VL - 8 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.12/ DO - 10.22436/jnsa.008.04.12 LA - en ID - JNSA_2015_8_4_a11 ER -
%0 Journal Article %A Wang, Zhihua %T Asymptotic aspect of Jensen and Jensen type functional equations in multi-normed spaces %J Journal of nonlinear sciences and its applications %D 2015 %P 402-411 %V 8 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.12/ %R 10.22436/jnsa.008.04.12 %G en %F JNSA_2015_8_4_a11
Wang, Zhihua. Asymptotic aspect of Jensen and Jensen type functional equations in multi-normed spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 4, p. 402-411. doi : 10.22436/jnsa.008.04.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.12/
[1] A short course on functional equations, D. Reidel Publ. Co., Dordrecht, 1987
[2] Stability of functional equations in single variable, J. Math. Anal. Appl., Volume 288 (2003), pp. 852-869
[3] Approximately ternary semigroup homomorphisms, Lett. Math. Phys., Volume 77 (2006), pp. 1-9
[4] On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66
[5] Remarks on the Hyers-Ulam stability of some systems of functional equations, Appl. Math. Comput., Volume 219 (2012), pp. 4096-4105
[6] A fixed point theorem and the Hyers-Ulam stability in non-Archimedean spaces, J. Math. Anal. Appl., Volume 400 (2013), pp. 68-75
[7] Stability of mappings on multi-normed spaces, Glasg. Math. J., Volume 49 (2007), pp. 321-332
[8] Multi-normed spaces, Dissertationes Math. (Rozprawy Mat.), Volume 488 (2012), pp. 1-165
[9] Hyers-Ulam stability of functional equations in several variables, Aequationes Math., Volume 50 (1995), pp. 143-190
[10] A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings , J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436
[11] On the stability of the linear functional equation , Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224
[12] Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998
[13] Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Science, New York, 2011
[14] Functional Equations and Inequalities with Applications, Springer Science, New York, 2009
[15] Approximately vanishing of topological cohomology groups, J. Math. Anal. Appl., Volume 318 (2006), pp. 758-771
[16] Superstability of higher derivatios in multi-Banach algebras , Tamsui Oxford J. Math. Sci., Volume 24 (2008), pp. 417-427
[17] Asymptotic aspect of the quadratic functional equation in multi-normed spaces, J. Math. Anal. Appl., Volume 355 (2009), pp. 717-724
[18] Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the pexiderized Cauchy functional equation, J. Math. Anal. Appl., Volume 335 (2007), pp. 763-778
[19] Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., Volume 337 (2008), pp. 399-415
[20] On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300
[21] On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl., Volume 281 (2003), pp. 516-524
[22] Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964
[23] Intuitionistic fuzzy stability of a general mixed additive-cubic equation, J. Math. Phys., Volume 51 (2010), pp. 1-21
Cité par Sources :