Asymptotic aspect of Jensen and Jensen type functional equations in multi-normed spaces
Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 4, p. 402-411.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we investigate the Hyers-Ulam stability of additive functional equations of two forms: of ''Jensen'' and ''Jensen type'' in the framework of multi-normed spaces. We therefore provide a link between multi-normed spaces and functional equations. More precisely, we establish the Hyers-Ulam stability of functional equations of these types for mappings from Abelian groups into multi-normed spaces. We also prove the stability on a restricted domain and discuss an asymptotic behavior of functional equations of these types in the framework of multi-normed spaces.
DOI : 10.22436/jnsa.008.04.12
Classification : 39B52, 58K55
Keywords: Hyers-Ulam stability, Jensen and Jensen type functional equations, Multi-normed spaces, Asymptotic behavior.

Wang, Zhihua 1

1 School of Science, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China
@article{JNSA_2015_8_4_a11,
     author = {Wang, Zhihua},
     title = {Asymptotic aspect of {Jensen} and {Jensen} type functional equations in multi-normed spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {402-411},
     publisher = {mathdoc},
     volume = {8},
     number = {4},
     year = {2015},
     doi = {10.22436/jnsa.008.04.12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.12/}
}
TY  - JOUR
AU  - Wang, Zhihua
TI  - Asymptotic aspect of Jensen and Jensen type functional equations in multi-normed spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2015
SP  - 402
EP  - 411
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.12/
DO  - 10.22436/jnsa.008.04.12
LA  - en
ID  - JNSA_2015_8_4_a11
ER  - 
%0 Journal Article
%A Wang, Zhihua
%T Asymptotic aspect of Jensen and Jensen type functional equations in multi-normed spaces
%J Journal of nonlinear sciences and its applications
%D 2015
%P 402-411
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.12/
%R 10.22436/jnsa.008.04.12
%G en
%F JNSA_2015_8_4_a11
Wang, Zhihua. Asymptotic aspect of Jensen and Jensen type functional equations in multi-normed spaces. Journal of nonlinear sciences and its applications, Tome 8 (2015) no. 4, p. 402-411. doi : 10.22436/jnsa.008.04.12. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.008.04.12/

[1] J. Aczél A short course on functional equations, D. Reidel Publ. Co., Dordrecht, 1987

[2] Agarwal, R. P.; Xu, B.; Zhang, W. Stability of functional equations in single variable, J. Math. Anal. Appl., Volume 288 (2003), pp. 852-869

[3] Amyari, M.; Moslehian, M. S. Approximately ternary semigroup homomorphisms, Lett. Math. Phys., Volume 77 (2006), pp. 1-9

[4] Aoki, T. On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, Volume 2 (1950), pp. 64-66

[5] Brzdȩk, J.; K. Ciepliński Remarks on the Hyers-Ulam stability of some systems of functional equations, Appl. Math. Comput., Volume 219 (2012), pp. 4096-4105

[6] Brzdȩk, J.; K. Ciepliński A fixed point theorem and the Hyers-Ulam stability in non-Archimedean spaces, J. Math. Anal. Appl., Volume 400 (2013), pp. 68-75

[7] Dales, H. G.; Moslehian, M. S. Stability of mappings on multi-normed spaces, Glasg. Math. J., Volume 49 (2007), pp. 321-332

[8] Dales, H. G.; M. E. Polyakov Multi-normed spaces, Dissertationes Math. (Rozprawy Mat.), Volume 488 (2012), pp. 1-165

[9] G. L. Forti Hyers-Ulam stability of functional equations in several variables, Aequationes Math., Volume 50 (1995), pp. 143-190

[10] Găvruţa, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings , J. Math. Anal. Appl., Volume 184 (1994), pp. 431-436

[11] D. H. Hyers On the stability of the linear functional equation , Proc. Nat. Acad. Sci. U.S.A., Volume 27 (1941), pp. 222-224

[12] Hyers, D. H.; Isac, G.; Th. M. Rassias Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998

[13] Jung, S. M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Science, New York, 2011

[14] Kannappan, Pl. Functional Equations and Inequalities with Applications, Springer Science, New York, 2009

[15] Moslehian, M. S. Approximately vanishing of topological cohomology groups, J. Math. Anal. Appl., Volume 318 (2006), pp. 758-771

[16] M. S. Moslehian Superstability of higher derivatios in multi-Banach algebras , Tamsui Oxford J. Math. Sci., Volume 24 (2008), pp. 417-427

[17] Moslehian, M. S.; Nikodem, K.; Popa, D. Asymptotic aspect of the quadratic functional equation in multi-normed spaces, J. Math. Anal. Appl., Volume 355 (2009), pp. 717-724

[18] Najati, A.; Park, C. Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras associated to the pexiderized Cauchy functional equation, J. Math. Anal. Appl., Volume 335 (2007), pp. 763-778

[19] Najati, A.; M. B. Moghimi Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach spaces, J. Math. Anal. Appl., Volume 337 (2008), pp. 399-415

[20] Rassias, Th. M. On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 297-300

[21] Rassias, J. M.; Rassias, M. J. On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl., Volume 281 (2003), pp. 516-524

[22] S. M. Ulam Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964

[23] Xu, T.; Rassias, J. M.; W. Xu Intuitionistic fuzzy stability of a general mixed additive-cubic equation, J. Math. Phys., Volume 51 (2010), pp. 1-21

Cité par Sources :